AN ANALOGUE OF COWLING-PRICE’S THEOREM FOR THE Q-FOURIER-DUNKL TRANSFORM

Azzedine Achak, Radouan Daher, Najat Safouane, El Mehdi Loualid

DOI Number
https://doi.org/10.22190/FUMI2001043A
First page
043
Last page
054

Abstract


The Q-Fourier-Dunkl transform satisfies some uncertainty principles in a similar way to the Euclidean Fourier transform. By using theheat kernel associated to the Q-Fourier-Dunkl operator, we have established an analogue of Cowling-Price, Miyachi and Morgan theorems on $\mathbb{R}$ by using the heat kernel associated to the Q-Fourier-Dunkl transform.

Keywords

Cowling-Price's theorem; Miyachi's theorem; Uncertainty Principles; Q-Fourier-Dunkl transform.

Keywords


Q-Fourier-Dunkl transform; uncertainty principles.

Full Text:

PDF

References


E. A. Al Zahrani, M. A. Mourou, The Continuous Wavelet Transform Associated with a

Dunkl Type Operator on the Real Line, Advances in Pure Mathematics, 2013, 3, 443-450

http://dx.doi.org/10.4236/apm.2013.35063.

A. Bonami, B. Demange and P. Jaming, Hermite functions and uncertainty principles for the

Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2002), 22-35.

M.G. Cowling and J.F. Price, Generalizations of Heisenberg inequality, Lecture Notes in Math.,

Springer, Berlin (1983), 443-449.

G.H. Hardy, A theorem concerning Fourier transform, J. London Math. Soc., 8 (1933), 227-231.

Hatem Mejjaoli, Ahsaa, Makren Salhi, Uncertainty principles for the Weinstein transform, Czechoslovak Mathematical Journal, 61 (136) (2011), 941-974.

A. Miyachi, A generalization of theorem of Hardy, Harmonic Analysis Seminar held at Izunagaoka,

Shizuoka-Ken, Japon 1997, 44-51.

G.W. Morgan, A note on Fourier transforms, J. London Math. Soc., 9 (1934), 188-192.10




DOI: https://doi.org/10.22190/FUMI2001043A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)