HERMITE-HADAMARD TYPE INEQUALITIES FOR P-CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
Abstract
In this paper, firstly the authors establish Hermite-Hadamard inequality for p-convex functions via Katugampola fractional integrals. Then a new identity involving Katugampola fractional integrals is proved. By using this identity, some new Hermite-Hadamard type inequalities for classes of p-convex functions are obtained.
Keywords
Keywords
Full Text:
PDFReferences
M. Avci, H. Kavurmaci and M. E. Ozdemir, New inequalities of HermiteHadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176.
P. L. Butzer, A. A. Kilbas, and J. J. Trujillo. Compositions of hadamard-type
fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269:387-400, 2002.
Z. B. Fang and R. Shi, On the(p; h)-convex function and some integral inequalities, J. Inequal. Appl., 2014(45)(2014), 16 pages.
E. Guariglia, Fractional Derivate of Riemann-Zeta Function: in Fractional Dynamics, Cattani, Srivastava, Yang (Eds.), De Gruyter, pp 357-368,2015.
E. Guariglia and S. Silvestrov, Fractional-Wavelet Analysis of Positive definite
Distributions and Wavelets on D’(C), in Engineering Mathematics II, Silvestrov,
Rancic (Eds), Springer, pp 357-353, 2017.
I. Iscan, A new generalization of some integral inequalities for (α;m)-convex functions, Mathematical Sciences, 7(22) (2013),1-8.
I. Iscan, New estimates on generalization of some integral inequalities for s-convex
functions and their applications, International Journal of Pure and Applied Mathematics,86(4) (2013), 727-746.
I. Iscan, Some new general integral inequalities for h-convex and h-concave functions, Adv. Pure Appl. Math. 5(1)(2014), 21-29.
I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, No. 3, 140-150 (2016).
I. Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Studia UniversitatisBabe s-Bolyai Mathematica, 60(3) (2015), 355-366.
I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions,
Hacettepe Journal of Mathematics and Statistics, 43(6) (2014), 935-942.
I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions,
Hacet. J. Math. Stat. 43 (6) (2014), 935-942.
U.N. Katugampola, New approach to a generalized fractional integral, Appl.
Math. Comput. 218(3)(2011) 860–865.
U.N. Katugampola, New approach to generalized fractional derivatives, Bull.
Math. Anal. Appl. 6(4)(2014) 1–15.
U.N. Katugampola, Mellin transforms of generalized fractional integrals and
derivatives, Appl. Math. Comput. 257(2015)566–580.
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier,Amsterdam, 2006.
A. A. Kilbas, Hadamard-type fractional calculus, Journal of Korean Mathematical
Society, 38(6):1191–1204, 2001.
U.S. Kirmaci, Inequalities for differentiable mappings and applications to special
means of real numbers and to midpoint formula,Appl. Math. Comput. 147 (2004),
-146.
V. Kiryakova. Generalized fractional calculus and applications, John Wiley and
Sons Inc., New York, 1994.
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional
diffrential equations, Wiley, New York, 1993.
M. A. Noor, K. I. Noor and S. Iftikhar, Nonconvex Functions and Integral Inequalities, Punjab University Journal of Mathematics, 47(2) (2015), 19-27.
M. A. Noor, K. I. Noor, M. V. Mihai, and M. U. Awan, Hermite-Hadamard
inequalities for differentiable p-convex functions using hypergeometric functions,
Researchgate doi: 10.13140/RG.2.1.2485.0648.
K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York,
A. Prudnikov, Y. Brychkov, O. Marichev, Integral and series. In: Elementary
Functions,vol. 1. Nauka, Moscow; 1981.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
M.Z. Sarıkaya, E. Set, H. Yaldız, N.Basak, Hermite-Hadamard’s inequalities for
fractionalintegrals and related fractional inequalities, Mathematical and Computer Modelling, 57(2013)2403-2407.
G. K. Srinivasan, The gamma function: An Eclectic Tour, Amer. Math. Monthly
, 297-315 (2007).
K.S. Zhang and J.P. Wan, p-convex functions and their properties, Pure Appl.
Math. 23(1) (2007), 130-133..
J. Wang, C. Zhu, Y. Zhou. New generalized Hermite-Hadamard type inequalities
and applications to special means. J. Inequal. Appl. 2013;2013(325):1-15
DOI: https://doi.org/10.22190/FUMI1901149T
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)