ON DERIVATIONS SATISFYING CERTAIN IDENTITIES ON RINGS AND ALGEBRAS
Abstract
Keywords
Full Text:
PDFReferences
A. Ali, B. Dhara, S. Khan and F. Ali: Multiplicative (generalized)-derivations
and left ideals in semiprime rings. Hacettepe J. Math. Stat. 44(6) (2015), 1293–1306.
S. Ali and A. N. Khan: On commutativity of Banach Algebras with derivations. Bull. Aust. Math. Soc. 91(2015), 419–425.
A. Ali, D. Kumar and P. Miyan: On generalized derivations and commutativity
of prime and semiprime rings. Hacettepe J. Math. Stat. 40(3)(2011), 367–374.
M. Ashraf, A. Ali and S. Ali: Some commutativity theorems for rings with
generalized derivations. Southeast Asian Bull. Math. 31(2007), 415–421.
H. E. Bell and M. N. Daif: On drivations and commutativity in prime rings.
Acta Math. Hung. 66(4)(1995), 337–343.
H. E. Bell and W. S. Martindale III: Centralizing mappings of semiprime
rings. Canad. Bull. Math. 30(1987), 92–101.
D. K. Camci and N. Aydin: On multiplicative (generalized) -derivations in
semiprime rings, Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat. 66(1)(2017), 153–164.
M. N. Daif: When is a multiplicative derivation additive? Internat. J. Math.
Math. Sci. 14(3)(1991), 615–618.
M. N. Daif and H. E. Bell: Remarks on derivations on semiprime rings. Internat. J. Math. Math. Sci. 15(1)(1992), 205–206.
M. N. Daif and M. S. Tammam-El-Sayiad: Multiplicative generalized derivations which are additive. East-West J. Math. 9(1)(1997), 33–37.
B. Dhara and S. Ali: On multiplicative (generalized)- derivations in prime and semiprime rings. Aequations Math. 86(2013), 65–79.
H. Goldmann and P. Semrl ˇ : Multiplicative derivations on C(X). Monatsh.
Math. 121(3)(1996), 189–197.
I. N. Herstein: Rings with involutions, The University of Chicago Press,
Chicago, USA, (1976).
M. Hongan: A note on semiprime rings with derivations. Inter. J. Math. and
Math. Sci. 20(2) (1997), 413–415.
S. Khan: On semiprime rings with multiplicative (generalized) -derivations. Beitr Algebra Geom. 57(1)(2016), 119–128.
D. Kumar and G. S. Sandhu: On multiplicative (generalized) -derivations in
semiprime rings. Inter. J. Pure and App. Math. 106(1)(2016), 249–257.
T. K. Lee and W. K. Shiue: A result on derivations with Engel conditions in
prime rings. South East Asian Bull. Math. 23(1999), 437–446.
W. S. Martindale III: When are multiplicative maps additive. Proc. Amer.
Math. Soc. 21(1969), 695–698.
E. C. Posner: Derivations in prime rings. Proc. Amer. Math. Soc. 8(1957),
–1100.
M. A. Qadri, M. S. Khan and N. Rehman: Generalized derivations and commutativity of prime rings. Indian. J. Pure Appl. Math. 34(9)(2003), 1393–1396.
G. S. Sandhu and D. Kumar: Derivable mappings and commutativity of associative rings. Italian J. Pure Appl. Math. 40(2018), 376–393.
R. K. Sharma and B. Prajapati: Generalized derivations and commutativity of
prime Banach algebras. Beitr Algebra Geom. 58(1)(2017), 179–187.
S. K. Tiwari, R. K. Sharma and B. Dhara: Identities related to generalized
derivations on ideals in prime rings. Beitr Algebra Geom. 57(4)(2016), 809–821.
B. Yood: On commutativity of unital Banach Algebra. Bull. Lond. Math. Soc.
(3)(1991), 278–280
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)