QUASI STATISTICAL CONVERGENCE IN CONE METRIC SPACES
Abstract
The main purpose of this paper is to define a new type of statistical
convergence of sequences in a cone metric space and investigate the relations
of these sequences with some other sequences.
Keywords
Keywords
Full Text:
PDFReferences
C. D. Aliprantice and R. Tourky: Cones and Duality. American Mathematical Society, USA, 2007.
K. P. Chi and T. V. An: Dugundji’s theorem for cone metric space. Appl. Math.
Lett. 24 (2011), 387-390.
J. Connor: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), 194-198.
J. Connor: The statistical and strong p-Cesaro convergence of sequences. Analysis (1998), 47-63.
H. C¸ akalli: A study on statistical convergence. Funct. Anal. Approx. Comput,
(2) (2009), 19-24.
K. Deimling: Nonlinear Analysis. Springer-Verlag, 1985.
H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301-313.
J. A. Fridy: Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 1187-
M. Ganichev and V. Kadets: Filter convergence in Banach spaces and generalized bases. In: General Topology in Banach Spaces (Taras Banach, eds.) NOVA
Science Publishers, Huntington, New York, 2001, pp.61-69.
L. G. Huang and X. Zhang: Cone metric spaces and fixed point theorems of
contractive mappings. J. Math. Anal. Appl. 332 (2) (2007), 1467-1475.
P. Kostyrko, M. Macaj, T. Salat and O. Strauch: On statistical limit
points. Proc. Amer. Math. Soc. 129 (2000), 2647-2654.
K. Li, S. Lin and Y.Ge: On statistical convergence in cone metric space. Topology Appl. 196 (2015), 641-651.
G. Di. Maio and L. D. R. Koinac: Statistical convergence in topology. Topology
Appl. 156 (2008), 28-45.
I. Sakaoglu Ozguc ˙ and T. Yurdakadim: On quasi-statistical convergence.
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 61 (1) (2012), 11-17.
S. Rezapour and R. Halmbarani: Some notes on the paper ”Cone metric
spaces and fixed point theorems of contractive mappings”. J. Math. Anal. Appl.
(2008), 719-724.
B. Rzepecki: On fixed point theorems of Maia type. Publ. Inst. Math. 28 (42)
(1980), 179-186.
I. J. Schoenberg: The integrability of certain functions and related summability
methods. Amer. Math. Monthly 66 (1959), 361-375.
H. Steinhaus: Sur la convergence ordinarie et la convergence asimptotique. Colloq. Math. 2 (1951), 73-74.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)