NEW RESULTS OF ESSENTIAL APPROXIMATE AND DEFECT POINT SPECTRUM BY USING THE GAP CONVERGENCE
Abstract
linear operators (Tn)n2N acting on a Banach space X, and the corresponding spectra
of a linear operator T on X. We examine this relationship under both generalized
convergence and compact convergence conditions for the sequence (Tn)n2N converging
to T.
Keywords
Keywords
Full Text:
PDFReferences
A. Ammar and A. Jeribi: The Weyl essential spectrum of a sequence of linear operators in Banach spaces. Indag. Math. (N.S.) 27(1) (2016), 282–295.
S. Goldberg: Perturbations of semi-Fredholm operators by operators converging to zero compactly. Proc. Amer. Math. Soc. 45 (1974), 93–98.
A. Jeribi: Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer-Verlag, New-York (2015).
A. Jeribi and N. Moalla: A characterisation of some subsets of Schechter’s essential spectrum and applications to singular transport equation, J. Math. Anal. Appl. 358(2) (2009), 434–444.
T. Kato: Perturbation theory for linear operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin Heidelberg NewYork, (1980).
M. G. Krein and M. A. Krasnoselski: Theoremes fundamentaux sur l’extension d’operateurs hermitiens. Uspekhi Matematicheskikh Nauk, 2(3(19)) (1947), 60–106.
M. G. Krein, M. A. Krasnoselski and D. P. Milman: Concerning the defeciency numbers of linear operators in Banach space and some geometric questions Sbornik Trudov Inst. A. N. Ukr. S. S. R., 11 (1948).
M. Pellicer: Generalized convergence and uniform bounds for semigroups of restrictions of nonselfadjoint operators. J. Dynam. Differential Equations 22(3) (2010), 399–411.
V. Rakočević: Approximate point spectrum and commuting compact perturbation. Glasgow Math. J. 28(2) (1986), 193–198.
V. Rakočević: On one subset of M. Schester’s essential spectrum. Math. Vesnik 5(18(33)), no. 4 (1981), 389–391.
V. Rakočević: On the essential approximate point spectrum. ll, Math. Vesnik 36 (1984), 89–97.
M. Schechter: Principles of Functional Analysis. Grad. Stud. Math. 36, Amer. Math. Soc., Providence, RI (2001).
M. Schechter: Riesz operators and Fredholm perturbations. Bull. Amer. Math. Soc. 74 (1968), 1139–1144.
C. Schmoeger: The spectral mapping theorem for the essential approximate point spectrum. Colloq. Math. 74(2) (1997), 167–176.
DOI: https://doi.org/10.22190/FUMI180409036A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)