SOME RESULTS ON (k, µ)'-ALMOST KENMOTSU MANIFOLDS
Abstract
greater than 3. We obtain that if M 2n+1 is non-Kenmotsu and satisfies R · C = 0 or
P · P = 0, then it is locally isometric to the Riemannian product H^(n+1)(-4) × R^n.
Keywords
Keywords
Full Text:
PDFReferences
A. Yıldız, U. C. De and B. E. Acet: On Kenmotsu manifolds satisfying certain
curvature conditions, SUT Journal of Mathematics 45(2) (2009), 89-101.
A. Yıldız and U. C. De: A classification of (k, µ)-contact metric manifolds, Commun. Korean Math. Soc. 27(2) (2012), 327-339.
D. E. Blair: Riemannian geometry of contact and symplectic manifolds, Progress
in Mathematics, 203, Birkh¨auser, 2010.
D. Janssens and L. Vanhecke: Almost contact structures and curvature tensors,
Kodai Math. J. 4(1) (1981), 1-27.
G. Dileo and A.M. Pastore: Almost Kenmotsu manifolds and local symmetry,
Bull. Belg. Math. Soc. Simon Stevin 14(2) (2007), 343-354.
G. Dileo and A.M. Pastore: Almost Kenmotsu manifolds and nullity distributions,
J. Geom. 93(1-2) (2009), 46-61.
G. Piti¸s: Geometry of Kenmotsu manifolds, Publishing House of Transilvania
University of Bra¸sov, Bra¸sov, Romania, 2007.
K. Kenmotsu: A class of almost contact Riemannian manifolds, Tˆohoku Math.
J. 24(1) (1972), 93-103.
K. K. Baishya and P. R. Chowdhury: Kenmotsu manifold with some curvature
coditionds, Annales Univ. Sci. Budapest. 59 (2016), 55-65.
P. Majhi and U. C. De: Classifications of N(k)-contact manifolds satisfying certain curvature conditions, Acta Math. Univ. Comenianae 84(1) (2015), 167-178.
T.W. Kim and H.K. Pak: Canonical foliations of certain classes of almost contact
metric structures, Acta Math. Sin. Engl. Ser. 21(4) (2005), 841-846.
U. C. De and K. Mandal: on locally φ-Conformally symmetric almost Kenmotsu
manifolds with nullity distribytions, Commun. Korean Math. Soc. 32(2) (2017),
-416.
U. C. De and K. Mandal: On a type of almost Kenmotsu manifolds with nullity
distributions, Arab J Math Sci 23(2) (2017), 109-123.
U. C. De, J. B. Jun and K. Mandal: On almost Kenmotsu manifolds with nullity
distributions, Tamkang Journal of Mathematics 48(3) (2017), 251-263.
Y. Wang and X. Liu: Riemannian semisymmetric almost Kenmotsu manifolds
and nullity distributions, Ann. Polon. Math. 112(1) (2014), 37-46.
Y. Wang: Three-dimensional locally symmetric almost Kenmotsu manifolds, Ann.
Polon. Math.(2016), 79-86.
Y. Wang: Conformally flat CR-integrable almost Kenmotsu manifolds, Bull.
Math. Soc. Sci. Math. Roumanie 59(4) (2016), 375-387.
Y. Wang: Conformally flat almost Kenmotsu 3-manifolds, Mediterr. J. Math.
(5) (2017), No. 186.
Y. Wang and W. Wang: Some results on (k, µ)′-almost Kenmotsu manifolds,
Quaestiones Math. DOI: 10.2989/16073606.2017.1391347.
K. Yano and M. Kon: Structures on Manifolds, Vol. 40, World Scientifc Press,
K. Yano and S. Sawaki: Riemannian manifolds admitting a conformal transformation group, J. Differential Geom. 2 (1968), 161-184.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)