Some classes of analytic functions associated with q-Ruscheweyh differential operator

Khalida Inayat Noor

DOI Number
-
First page
531
Last page
538

Abstract


q-analysis (q-calculus) has many applications in mathematics and
physics. $q$-Derivative $D_q$ of a function $f$, analytic in open
unit disc, is defined as $D_qf(z)=\frac{f(qz)-f(z)}{(q-1)z},$ $q\in
(0,1),$ $(z\neq0)$ and $D_qf(0)=f'(0).$ Using $q$-analogue of well
known Ruscheweyh differential operator $D^n_q$ of order $n,$ we
introduce certain classes $ST_q(n)$ for $n=0,1,2,...,$ and
investigate a number of interesting properties such as inclusion and
coefficient results.


Keywords

Analytic, Starlike functions, q-derivative, Ruscheweyh operator, Subordination

Keywords


Anaytic Functions, q-calculus, Differential operator

Full Text:

PDF

References


K. Ademogullari and Y. Kahramaner, q-harmonic mappings for which analytic part is

q-convex function, Nonlin. Anal. Diff. Eqn., 4(2016), 283-293.

S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc.,

(1969), 429-446.

T. Ernest, The History of q-Calculus and a New Method, Licentia Dissertation, Uppsala, 2001.

A. W. Goodman, Univalent Function, Vol. I, Mariner Publishing Company, Inc.,

Florida 1983.

M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables, 14(1990), 77-84.

F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Trans. Of Royal Soc. of Edinburgh, 46(1909), 253-281.

F. H. Jackson, On q-definite integrals, Quart. J. Pure. Appl. Math., 41 (1910), 193-203.

V. Kac and P. Cheung,Quantum Calculus, Springer-Verlag, Newy York, 2002.

S. Kanas and D. Raducanu, Some classes of analytic functions related to Conic domains, Math. Slovaca, 64(2014), 1183-1196.

K. I. Noor,On generalized q-close-to-convexity, Appl. Math. Inform. Sci. 11(5) (2017),

–1388

K. I. Noor, On generalized q-Bazilevic functions, J. Adv. Math. Stud. 10(2017), 418-

K. I. Noor, Some classes of q-alpha starlike and related analytic functions, J. Math.

Anal. 8(4)(2017), 24-33.

K. I. Noor and R. S. Badar, On a class of quantum alpha-convex functions, J. Appl.

math. Informatics, 36(2018).

K. I. Noor and M. A. Noor, Linear combinations of generalized q-starlike functions,

Appl. Math. Info. Sci. 11(2017), 745-748.

K. I. Noor and S. Riaz, Generalized q-starlike functions, Stud. Scient. Math. Hungerica,

(2017), 1-14.

K. I. Noor, S. Riaz and M. A. Noor, On q-Bernardi Integral Operator, TWMS J. Pure

Appl. Math., 8(2017), 3-11.

K. I. Noor and H. Shahid, On dual sets and neighborhood of new classes of analytic

functions involving q-derivative, Iran. J. Sci. Technol. Trans, Sci. (2018).

ST. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc.,

(1975), 109-115.

S. K. Sahoo and N. L. Sharma, On a generalization of starlike functions of order alpha,

arXiv:1404.3988VI [math. CV], April 2014.

H. E. O. Ucar, Coefficient inequality for q-starlike functions, Appl. Math. Comput.,

(2016), 122-126.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)