ON THE GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES
Abstract
Keywords
Keywords
Full Text:
PDFReferences
A. Altın, E. Erkus ¸ and F. Tas ¸delen: The q-Lagrange polynomials in several variables. Taiwanese J. Math. 10 (2006), 1131–1137.
R. Aktas ¸, R. Sahin and A. Altın: On a multivariable extension of the Humbert polynomials. Appl. Math. Comput. 218 (2011), 662–666.
R. Aktas ¸, F. Tas ¸delen and N. Yavuz: Bilateral and bilinear generating functions for the generalized Zernike or disc polynomials. Ars Combin. 108 (2013), 389–400.
J. Choi: A generalization of Gottlieb polynomials in several variables. Appl. Math. Lett. 25 (2012), 43–46.
E. Erkus-Duman: Some new properties of univariate and multivariate Gottlieb polynomials. Miskolc Math. Notes (2019) (accepted for publication).
M. J. Gottlieb: Concerning some polynomials orthogonal on a finite or enumerable set of points. Amer. J. Math. 60 (1938), 453–458.
S.-J. Liu, S.-D. Lin, H. M. Srivastava and M.-M. Wong: Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized Lauricella functions.
Appl. Math. Comput. 218 (2012), 7685–7693.
N. Ozmen and E. Erkus-Duman: Some families of generating functions for the generalized Cesáro polynomials. J. Comput. Anal. Appl. 25 (2018), 670–683.
H. M. Srivastava and M. C. Daoust: Certain generalized Neumann expansions
associated with the Kamp´ e de F´ eriet function. Nederl. Akad. Westensch. Indag. Math. 31 (1969), 449–457.
H. M. Srivastava and P. W. Karlsson: Multiple Gaussian hypergeometric series. Ellis Horwood series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984.
H. M. Srivastava and H. L. Manocha: A Treatise on Generating Functions. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
H. M. Srivastava, F. Tas ¸delen, F. and B Sekeroglu: Some families of generating functions for the q-Konhauser polynomials. Taiwanese J. Math. 12 (2008), 841–850.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)