New Type Inequalities for $\mathbb{B}^{-1}$-convex Functions involving Hadamard Fractional Integral
Abstract
Abstract convexity is an important area of mathematics in recent years and it has very significant applications areas like inequality theory. The Hermite-Hadamard Inequality is one of these applications. In this article, we studied Hermite-Hadamard Inequalities for $\mathbb{B}^{-1}$-convex functions via Hadamard fractional integral.
Keywords
Keywords
Full Text:
PDFReferences
G. Adilov and I. Yesilce: B−1−convex Sets and B−1−measurable Maps. Numerical
Functional Analysis and Optimization 33(2) (2012), 131-141.
G. Adilov and I. Yesilce: On Generalization of the Concept of Convexity. Hacettepe
Journal of Mathematics and Statistics 41(5) (2012), 723-730.
G. Adilov and I. Yesilce: B−1−convex Functions. Journal of Convex Analysis 24(2)
(2017), 505-517.
W. Briec and Q. B. Liang: On Some Semilattice Structures for Production Technologies. Eur. J. Oper. Res. 215 (2011), 740749.
Z. Dahmani: On Minkowski and Hermite-Hadamard integral inequalities via fractional
integration. Ann. Funct. Anal. 1(1) (2010), 51-58.
S. S. Dragomir and C. E. M. Pearce: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University 2000.
J. Hadamard: Etude sur les proprietes des fonctions entieres et en particulier d’une
fonction consideree par Riemann. Journal des Mathematiques Pures et Appliquees 58
(1893), 171-215.
Ch. Hermite: Sur deux limites d’une integrale define. Mathesis 3 (1883), 82.
H. Kavurmaci, M. Avci and M. E. Ozdemir: New Inequalities of Hermite-Hadamard
Type for Convex Functions with Applications. Journal of Inequalities and Applications
(2011), 86.
S. Kemali, I. Yesilce and G. Adilov: B-convexity, B−1-convexity, and Their Comparison. Numerical Functional Analysis and Optimization 36(2) (2015), 133-146.
A. A. Kilbas, O. I. Marichev and S. G. Samko: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Switzerland, 1993.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo: Theory and Applications
of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204,
Elsevier, Holland, 2006.
C. P. Niculescu and L. -E. Persson: Old and new on the Hermite-Hadamard
inequality. Real Analysis Exchange 29(2) (2003), 663-685.
M. E. Ozdemir, E. Set and M. Z. Sarikaya: Some New Hadamard Type Inequalities for Co-Ordinated m-Convex and (α, m)-Convex Functions. Hacettepe Journal of
Mathematics and Statistics 40(2) (2011), 219-229.
M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak: HermiteHadamards Inequalities
for Fractional Integrals and Related Fractional Inequalities. Mathematical and Computer Modelling 57(9) (2013), 2403-2407.
G. Tinaztepe, I. Yesilce and G. Adilov: Separation of B−1−convex Sets by
B−1−measurable Maps. Journal of Convex Analysis 21(2) (2014), 571-580.
I. Yesilce: Inequalities for B-convex Functions via Generalized Fractional Integral.
(submitted).
I. Yesilce: Some Inequalities for B−1-convex Functions via Fractional Integral Operator. TWMS Journal of Applied and Engineering Mathematics, (accepted).
I. Yesilce and G. Adilov: Hermite-Hadamard Inequalities for B-convex and B−1-
convex Functions. International Journal of Nonlinear Analysis and Applications 8(1)
(2017), 225-233.
I. Yesilce and G. Adilov: Hermite-Hadamard Inequalities for L(j)-convex Functions
and S(j)-convex Functions. Malaya Journal of Matematik 3(3) (2015), 346-359.
I. Yesilce and G. Adilov: Hermite-Hadamard Type Inequalities for B−1-convex
Functions involving Generalized Fractional Integral Operators. Filomat 32(18) (2018).
I. Yesilce and G. Adilov: Some Operations on B−1-convex Sets. Journal of Mathematical Sciences: Advances and Applications 39(1) (2016), 99-104.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)