SOME NEWESTIMTES OF APPROXIMATION OF FUNCTIONS BY FOURIER-JACOBI SUMS
Abstract
Keywords
Full Text:
PDFReferences
V.A.Abilov, F.V.Abilova, and M.K.Kerimov, Some Issues Concerning Approximations
of functions by Fourier-Bessel Sums, Comput. Math. Math. Phys, Vol.
, No.7,pp.867-873 (2013).
W.O. Bray, M.A. Pinsky, Grawth Properties of Fourier Transforms via Moduli of
Continuity, Journal of Functional Analysis 255, 2265-2285 (2008).
V.A.Abilov, F.V.Abilova, Approximation of functions by Fourier-Bessel sums,
Izv.Vyssh.Uchebn. Zaved.Math.,No.8,3-9 (2001).
M. Flensted-Jensen and T. Koornwinder, The Convolution structure for Jacobi
function expansions, Ark.Mat.11,245-262 (1973).
S.S.Platonov, Fourier-Jacobi harmonic analysis and approximation of functions,
Izvestiya RAN : Ser.Mat. 78 :1, 117-166 (2014).
S.S. Platonov, Some problems in the theory of approximation of functions on compact
homogeneous manifolds , Mat. Sb. 200 :6(2009), 67-108 ; English transl. Sb,
Math. 200 :6 , 845-885 (2009)
S.M. Nikol’skii, Approximation of Functions of Several Variables ad Embeding
Theorems, (Nauka, Moscow, 1996) [in Russian].
R.Askey and S.Wainger, A convolution structure for Jacobi series, Amer. J.Math.
, 463-485 (1969).
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)