THE COMPARABLY ALMOST (S,T)- STABILITY FOR RANDOM JUNGCK-TYPE ITERATIVE SCHEMES
Abstract
The purpose of this paper is to introduce the concept of generalized - weakly con-
tractive random operators and study a new concept of stability introduced by Kim [15] which is alled comparably almost stability and then prove the comparably almost (S,T)- stability for the Jungck-type random iterative schemes. Our results extend, improve and unify the recent results in [15], [19], [32] and many others. We also give stochastic version of many important known results.
Keywords
Full Text:
PDFReferences
Y. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces. In: Gohberg, I, Lyubich,
Y(eds.) New Results in Operator Theory and Its Applications .Birkhuser, Basel 98 (1997) 7-22.
I. Beg, Approximaton of random xed points in normed spaces, Nonlinear Anal. 51 (2002) 1363-1372.
I. Beg, Minimal displacement of random variables under Lipschitz random maps, Topol. Methods Nonlinear Anal.
(2002) 391-397.
I. Beg, M. Abbas, Iterative procedure for solutions of random operator equations in Banach spaces, J. Math. Appl.
(2006) 181-201.
AL-BAQERI
I. Beg, N. Shahzad, Random xed point theorems for nonepansive and contractive type random operators on
Banach spaces, J. Appl. Math. Stochastic Anal. 7 (1994) 569-580.
A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976) 641-657.
O. Hans, Reduzierende zulliallige transformaten, Czechoslovak Math. J. 7 (1957) 154-158.
O. Hans, Random operator equations, Proceedings of the fourth Berkeley Symposium on Math. Statistics and
Probability II (1961) 185-202.
A. M. Harder, Fixed point theory and stability results for xed points iteration procedures, Ph. D. Thesis,
University of Missouri- Rolla, (1987).
A. M. Harder, T. L. Hicks, A stable iteration procedure for nonexpansive mappings, Math. Japonica, 33(5)
(1988) 687-692.
A. M. Harder, T. L. Hicks, Stability results for xed point iteration procedures, Math. Japonica, 33(5) (1988)
-706.
S. Ishikawa, Fixed points by a new iteration method. Proceedings of the American Mathematical Society 44
(1974) 147-150.
S. Itoh, Random xed point theorems with an application to random dierential equations in Banach spaces, J.
Math. Anal. Appl. 67 (1979) 261-273.
G. Jungck. Commuting mappings and xed points. The American Mathematical Monthly. 83 (1976) 261-263.
K. S. Kim, Convergence and stabililty of generalized -weak contraction mapping in CAT(0) Spaces, Open Math.
(2017) 1063-1074.
W. R. Mann, Mean Value methods in iteration. Proceedings of the American Mathematical Society, 4 (1953)
-510.
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000)
-229.
G. A. Okeke, M. Abbas, Convergence and almost sure T-stability for a random iterative sequence generated by
a generalized random operator, Journal of Inequalities and Applications 146 (2015) 1-11.
G. A. Okeke, J. K. Kim, Convergence and summable almost T-stability of the random Picard-Mann hybrid
iterative process, Journal of Inequalities and Applications 290 (2015).
G. A. Okeke, J. K. Kim, Convergence and (S,T)-stability almost surely for the random Jungck-type iteration
processes with applications, Congent Mathematics 3:1258768 (2016) 1-15.
M. O. Olatinwo, Some stability and strong convergence results for the Jungck-Ishikawa iteration process. Creative
Mathematics and Informatics 17 (2008) 33-42.
M. O. Olatinwo, Some stability results for two hybrid xed point iterative algorithms of Kirk-Ishikawa and
Kirk-Mann type. Journal of Advanced Mathematical Studies 1 (2008) 514.
M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for - strong pseudo-contractions and
nonlinear equations of the - strongly accretive type. J. Math. Anal. Appl. (1998) 227(2) 319-334.
N. S. Papageorgiou, Random xed point theorems for measurable multifunction in Banach spaces, Proc. Amer.
Math. Soc. 97 (1986) 507-514.
W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for
continuous functions on an arbitrary interval, J. Comp. Appl. Math. 235 (2011) 3006-3014.
R. A. Rashwan, H. A. Hammad and G. A. Okeke, Convergence and almost sure (S,T)-stability for random
iterative schemes, International Journal of Advances in Mathematics, 2016 NO.1 (2016) 1-16.
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(4) (2001) 2683-2693.
S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-type iterative procedures, International Journal
of Mathematics and Mathematical Sciences 19 (2005) 3035-3043.
A. Spacek, Zufallige gleichungen, Czechoslovak Math. J. 5(1955) 462-466.
H. K. Xu, Some random xed point theorems for condensing and nonexpansive operators, Proc. Amer. Math.
Soc. 110 (1990) 103-123.
Z. Xue, The convergence of xed point for a kind of weak contraction, Nonlinear Func. Anal. Appl. 21(3) (2016)
-500.
SS. Zhang, XR. Wang, M. Liu, Almost sure T-stability and convergence for random iterative algorithms, Appl.
Math. Mech. 32(6) (2011) 805-810.
DOI: https://doi.org/10.22190/FUMI1902175A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)