Boundedness for the multilinear commutator associated with the Littlewood-paley operator on two spaces
Abstract
type boundedness for the multilinear commutator associated with the Littlewood-paley operator on Hardy and Herz-Hardy Spaces are obtained,
using some techniques for classical inequalities
Keywords
Full Text:
PDFReferences
} J. Alvarez, Continuity properties for linear commutators of
Calder'on-Zygmund operators, Collect. Math., 49(1998), 17-31.
item{[2]} R. Coifman, R. Rochberg and G. Weiss, Factorization theorem
for Hardy space in several variables, Ann. of Math., 103(1976), 611-635.
item{[3]} J. Garcia-Cuerva and M. L. Herrero, A Theory of Hardy
spaces associated to Herz Spaces, Proc. London Math. Soc., 69(1994), 605-628.
item{[4]} L. Z. Liu, Weighted weak type $(H^1, L^1)$ estimates for commutators
of Littlewood-Paley operators, Indian J. of Math., 45(1)(2003), 71-78.
item{[5]} L. Z. Liu, Weighted Block-Hardy spaces estimates for
commutators of Littlewood-Paley operators, Southeast Asian Bull. of Math.,
(2004), 833-838.
item{[6]} L. Z. Liu, Weighted weak type estimates for commutators of Littlewood-Paley operator,
Japanese J. of Math., 29(1)(2003), 1-13.
item{[7]} L. Z. Liu, S. Z. Lu and J. S. Xu, Boundedness for commutators of Littlewood-Paley operators,
Adv. in Math.(China), 32(2003), 473-480.
item{[8]} S. Z. Lu and D. C. Yang, The local versions of $H^p(R^n)$ spaces
at the origin, Studia. Math., 116(1995), 147-158.
item{[9]} S. Z. Lu and D. C. Yang, The decomposition of the weighted Herz spaces and its
applications, Sci. in China(ser.A), 38(1995), 147-158.
item{[10]} S. Z. Lu and D. C. Yang, The weighted Herz type Hardy spaces and its
applications, Sci. in China(ser.A), 38(1995), 662-673.
item{[11]} S. Z. Lu and D. C. Yang, The continuity of commutators on Herz-type space,
Michigan Math. J., 44(1997), 255-281.
item{[12]} C. P'erez, Endpoint estimate for commutators of singular integral
operators, J. Func. Anal., 128(1995), 163-185.
item{[13]} C. P'erez and R. Trujillo-Gonzalez, Sharp weighted estimates for
multilinear commutators, J. London Math. Soc., 65(2002), 672-692.
item{[14]} E. M. Stein, Harmonic analysis: real variable methods, orthogonality and
oscillatory integrals, Princeton Univ. Press, Princeton NJ., 1993.
item{[15]} A. Torchinsky, Real variable methods in harmonic analysis,
Pure and Applied Math., 123, Academic Press, New York, 1986.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)