NEW FIXED POINT RESULTS FOR T-CONTRACTIVE MAPPING WITH c-DISTANCE IN CONE METRIC SPACES
Abstract
In this article, we generalize and improve the results of Fadail et al.[Z. M. Fadail and S. M. Abusalim, Int. Jour. of Math. Anal., Vol. 11, No. 8(2017), pp. 397-405.] and Dubey et al.[AnilKumar Dubey and Urmila Mishra, Non. Func. Anal. Appl., Vol. 22, No. 2(2017), pp 275-286.] under the concept of a c-distance in cone metric spaces. We prove the existence and uniqueness of the fixed point for T -contractive type mapping under the concept of c-distance in cone metric spaces.
Keywords
Keywords
Full Text:
PDFReferences
Sahar Mohamed Ali Abou Bakr, Common Fixed Point of Generalized Cyclic Banach Algebra Contractions and Banach Algebra Kannan Types of Mappings on Cone Quasi
Metric Spaces, Jour. Non. Sci. Appl., 12(10) (2019), 644–655.
A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two Fixed Point Theorem for Special Mapping, arXiv:0903.1504v1[mathFA].
Y. J., Cho, R. Saadati and S. Wang, Common Fixed point Theorems on Generalized Distance in Ordered Cone Metric Spaces, Computer and Mathematics with Applica-
tions, 61(4) (2011), 1254–1260, http://doi.org/10.1016/j.camwa.2011.01.004.
A. K. Dubey, Reena Shukla and R. P. Dubey, Common Fixed point Theorems for T-Reich contraction Mapping in Cone metric spaces, Adv. Fixed Point Theory, 3(2)
(2013), 315–326.
A. K. Dubey, Rita Shukla and R. P. Dubey, Common Fixed Point Theorems for Generalized T-Hardy-Rogers Contraction Mapping in Cone Metric Space, Adv. Ine. Appl.,
(18) (2014), 1–16.
A. K. Dubey, Rita Shukla and Ravi Prakash Dubey, Cone Metric Spaces and Fixed Point Theorems of Generalized T-Zamfirescu Mappings, Int. Jour. Appl. Math. Re-
search, 2(1) (2013), 151–156.
A. K. Dubey, Rohit Verma and Ravi Prakash Dubey, Cone Metric Spaces and Fixed Point Theorems of Contractive Mapping for c-Distance, Int. Jour. Math. and its Appl., 3(1) (2015), 83–88.
Anil Kumar Dubey and Urmila Mishra Some Fixed Point Results for c-Distance in Cone Metric Spaces, Non. Func. Anal. Appl., 22(2) (2017), 275–286.
Anil Kumar Dubey and Urmila Mishra Some Fixed Point Results of Single Valued
Mapping for c-Distance in TVS Cone Metric Spaces, Filomat, 30(11) (2016), 2925–2934, DOI 10.2298/FIL1611925D.
Z. M. Fadail, A. G. B. Ahmad and L. Paunovic, New Fixed Point Results of Single Valued Mapping for c-Distance in Cone Metric Spaces. Abst. Appl. Anal., 2012, Article
ID 639713, 1–12, http://doi.org/10.1155/2012/639713.
Z. M. Fadail and S. M. Abusalim, T-Reich Contraction and Fixed Point Rresults in Cone Metric Spaces With c-Distance, Int. Jour. of Math. Anal., 11(8) (2017), 397–405, http://doi.org/10.12988/ijma.2017, 7338.
L. G. Huang and X. Zhang, Cone metric Spaces and Fixed Point Theorems of Contractive Mappings, Jour. Math. Anal. Appl., 332(2),(2007), 1468–1476, http://doi.org/10.1016/j.jmaa.2005.03.087.
G. Jungck, S. Radenovic, S. Radojevic and V. Rakocevic, Common Fixed Point Theorems for Weakly Compatible Pairs on Cone Metric Spaces, Fixed Point Theory and Applications, 2009 (2009), Article ID 643840, http://doi.org/10.1155/2009/643840.
Zoran D. Mitrovic, Hassen Aydi, Mohd Salmi Md Noorani, Haitham Qawaqneh, The Weight Inequalities on Reich Type Theorem in bb-metric Spaces, Jour. Math. Comp. Sci., 19(1) (2019), 51–57.
W. Sintunavarat, Y. J. Cho and P. Kumam, Common Fixed Theorems for c-Distance in Ordered Cone Metric Spaces, Computer and Mathematics with Applications, 62(4)
, 1969–1978, ttp://doi.org/10.1016/j.camwa.2011.06.040.
S. Wang and B. Guo, Distance in Cone Metric Spaces and Common Fixed Point Theorems, Appl. Math. Letter, 24(10) (2011), 1735–1739, http://doi.org/10.1016/j.aml.2011.04.031.
DOI: https://doi.org/10.22190/FUMI2002367D
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)