Application of block Cayley-Hamilton theorem to generalized inversion
Abstract
Keywords
Full Text:
PDFReferences
S. Barnett Leverrier’s algorithm: a new proof and extensions, SIAM J. Matrix Anal. Appl. 10 (1989), 551–556.
A. Ben-Israel, T.N.E. Greville, Generalized inverses: theory and applications, Springer, New York, NY, USA, 2nd edition, 2003.
Y. Chen, The generalized Bott–Duffin inverse and its application, Linear Algebra Appl. 134 (1990), 71–91.
Y. Chen, Finite Algorithms for the (2)-Generalized Inverse A(2)
T,S, Linear and Multilinear Algebra 40 (1995), 61–68.
H.P. Decell, An application of the Cayley-Hamilton theorem to generalized matrix inversion, SIAM Review 7 No 4 (1965), 526–528.
M.P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514.
D.K. Faddeev and V.N. Faddeeva, Computational Methods of Linear Algebra, Freeman, San Francisko, 1963.
T.N.E. Grevile, The Souriau-Frame algorithm and the Drazin pseudoinverse, Linear Algebra Appl. 6 (1973), 205–208.
R.E. Hartwig More on the Souriau-Frame algorithm and the Drazin inverse, SIAM J. Appl. Math. 31 No 1 (1976), 42–46.
A.J. Getson, F.C. Hsuan, {2}-inverses and their Statistical applications, Lecture Notes in Statistics 47, Springer, New York,
NY, USA, 1988.
J. Ji, An alternative limit expression of Drazin inverse and its applications, Appl. Math. Comput. 61 (1994), 151–156.
T. Kaczorek, New extensions of the Cayley–Hamilton theorem with applicattions, Proceeding of the 19th European Conference
on Modelling and Simulation, 2005.
T. Kaczorek, An Existence of the Cayley-Hamilton Theorem for Singular 2-D Linear Systems with Non-Square Matrices, Bulletin
of the Polish Academy of Sciences. Technical Sciences 43(1) (1995), 39–48.
T. Kaczorek, Generalization of the Cayley-Hamilton Theorem for Non-Square Matrices, International Conference of Fundamentals
of Electronics and Circuit Theory XVIII- SPETO, Gliwice, 1995, pp. 77–83.
T. Kaczorek, An Existence of the Caley-Hamilton Theorem for Non-Square Block Matrices, Bulletin of the Polish Academy of
Sciences. Technical Sciences 43(1) (1995), 49–56.
T. Kaczorek, An Extension of the Cayley-Hamilton Theorem for a Standard Pair of Block Matrices, Applied Mathematics and
Computation Sciences 8(3) (1998), 511–516.
T. Kaczorek, Extension of the Cayley-Hamilton theorem to continuoustime linear systems with delays, Int. J. Appl. Math.
Comput. Sci. 15(2) (2005), 231–234.
T. Kaczorek, An extension of the CayleyHamilton theorem for nonlinear timevarying systems, Int. J. Appl. Math. Comput. Sci.
(1) (2006), 141–145.
N.P. Karampetakis, Computation of the generalized inverse of a polynomial matrix and applications, Linear Algebra Appl. 252 (1997), 35–60.
N.P. Karampetakis, P.S. Stanimirovi´c, M.B. Tasi´c, On the computation of the Drazin inverse of a polynomial matrix, Far East J. Math. Sci. (FJMS) 26(1) (2007), 1–24.
R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 52 (1956), 17–19.
A. Paz, An application of the Cayley-Hamilton theorem to matrix polynomials in several variables, Linear and Multilinear Algebra 15 (1984), 161–170.
P.S. Stanimirovi´c, M.B. Tasi´c, Drazin inverse of one-variable polynomial matrices, Filomat, Niˇs 15 (2001), 71–78.
P.S. Stanimirovi´c, A finite algorithm for generalized inverses of polynomial and rational matrices, Appl. Math. Comput. 144 (2003) 199–214.
J. Vitoria, A block–Cayley–Hamilton theorem, Bulletin Mathematique 26(71) (1982), 93–97.
G. Wang, L. Qiu, Some New Applications of the Block–Cayley–Hamilton Theorem, J. of Shangai Teachers Univ. (Natural Sciences) 27 (1998), 8–15, In Chinesse.
G.Wang, A finite algorithm for computing the weighted Moore-Penrose inverse A†M,N, Appl. Math. Comput. 23 (1987), 277–289.
G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing/New York, 2004.
Y. Wei, H. Wu, The representation and approximation for the generalized inverse A(2)
T,S, Appl. Math. Comput. 135 (2003), 263–276.
Y. Yu, G. Wang, On the generalized inverse A(2)
T,S over integral domains, Aust. J. Math. Appl. 4 (2007), 1. Article 16, 1–20.
Y. Yu, G. Wang, DFT calculation for the {2}-inverse of a polynomial matrix with prescribed image and kernel, Applied Math. Comput. 215 (2009), 2741–2749.
B. Zheng, R. B. Bapat, Generalized inverse A(2)
T,S and a rank equation, Appl. Math. Comput. 155 (2004), 407-415.
G. Zielke, Report on Test Matrices for Generalized Inverses, Computing 36 (1986), 105–162.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)