CONFORMAL AND PARACONTACTLY GEODESIC TRANSFORMATIONS OF ALMOST PARACONTACT METRIC STRUCTURES

Adara-Monica Blaga

DOI Number
https://doi.org/10.22190/FUMI2001121B
First page
121
Last page
130

Abstract


We give the expressions of the virtual and the structure tensor fields of an almost paracontact metric structure. We also introducethe notion of paracontactly geodesic transformation and prove thatthe structure tensor field is invariant under conformal andparacontactly geodesic transformations. For the particular case of para-Kenmotsu structure, we give a necessary and sufficient condition for a conformal transformation to map it to an $\alpha$-para-Kenmotsu structure and show that a para-Kenmotsu manifold admits no nontrivial paracontactly geodesic transformation of the metric. In the conformal case, the virtual tensor field is invariant.  

Keywords

tensor field, paracontact metric structure, geodesic transformation.

Full Text:

PDF

References


bibitem{blid} {sc A. M. Blaga, C. Ida}: textit{Generalized almost paracontact structures}, An. c St. Univ. Ovidius Constanc ta textbf{23}, no. 1 (2015), 53--64.

bibitem{er} {sc S. Erdem}: textit{On almost (para)contact (hyperbolic) metric

manifolds and harmonicity of $(varphi,varphi')$-holomorphic maps

between them}, Houston Math. J. textbf{28} (2002), 21--45.

bibitem{ki} {sc V. F. Kirichenko, N. N. Dondukova}: textit{Contactly Geodesic Transformations of Almost-Contact

Metric Structures}, Math. Notes textbf{80}, no. 2 (2006), 204--213.

bibitem{us} {sc V. F. Kirichenko, I. V. Uskorev}: textit{Invariants of Conformal Transformations of Almost Contact

Metric Structures}, Math. Notes textbf{84}, no. 6 (2008), 783--794.

bibitem{si} {sc N. S. Sinyukov}: textit{Geodesic Maps of Riemannian Spaces}, Nauka, Moskow, 1979.

bibitem{we} {sc J. Welyczko}: textit{Slant curves in $3$-dimensional normal almost paracontact metric manifolds}, Mediterr. J. Math. textbf{11} (2014), 965--978.




DOI: https://doi.org/10.22190/FUMI2001121B

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)