THE MOSTAR INDEX OF FULLERENES IN TERMS OF AUTOMORPHISM GROUP

Modjtaba Ghorbani, Shaghayegh Rahmani

DOI Number
https://doi.org/10.22190/FUMI2001151G
First page
151
Last page
165

Abstract


Let $G$ be a connected graph. For an edge $e=uv\in E(G)$, suppose $n(u)$ and $n(v)$ are respectively, the number of vertices of $G$ lying closer to vertex $u$ than to vertex $v$ and the number of vertices of $G$ lying closer to vertex $v$ than to vertex $u$. The Mostar index is a topological index which is defined as $Mo(G)=\sum_{e\in E(G)}f(e)$, where $f(e) = |n(u)-n(v)|$. In this paper, we will compute the Mostar index of a family of fullerene graphs in terms of the automorphism group.  

Keywords

Automorphism group, Mostar index, group action.

Full Text:

PDF

References


bibitem{nn4}

{sc A. R. Ashrafi {rm and} M. Ghorbani}: textit{Computer application of GAP to the evaluation of numbers of permutational isomers of hetero fullerenes}, MATCH Commun. Math. Comput. Chem. {bf 60} (2) (2008) $359-367$.

bibitem{nn10}

{sc A. R. Ashrafi {rm and} M. Ghorbani}: textit{Distance matrix and diameter of two infinite family of fullerenes}, Optoelect. Adv. Mater-Rapid Commun. {bf 3} (6) (2009) $596-599$.

bibitem{nn16}

{sc A. R. Ashrafi {rm and} M. Ghorbani}: textit{PI and omega polynomials of IPR fullerenes}, Fuller. Nanotub. Carbon Nanostruct. {bf 18} (3) (2010) $198-206$.

bibitem{nn9}

{sc A. R. Ashrafi, M. Ghorbani {rm and} M. Jalali}: textit{Eccentric connectivity polynomial of an infinite family of fullerenes}, Optoelect. Adv. Mater-Rapid Commun. {bf 3} (8) (2009) $823-826$.

bibitem{nn7}

{sc A. R. Ashrafi, M. Ghorbani {rm and} M. Jalali}: textit{Study of IPR fullerene by counting polynomials}, J. Theo. Com. Chem. {bf 8} (3) (2009) $451-457$.

bibitem{nn15}

{sc A. R. Ashrafi, M. Ghorbani {rm and} M. Jalali}: textit{The PI and edge Szeged polynomials of an Infinite family of fullerenes}, Fuller. Nanotub. Carbon Nanostruct. {bf 18} (3) (2010) $107-116$.

bibitem{nn5}

{sc A. R. Ashrafi, M. Ghorbani {rm and} M. Jalali}: textit{The vertex PI and Szeged indices of an Infinite family of fullerenes}, J. Theor. Comput. Chem. {bf 7} (2) (2008) $221-231$.

bibitem{nn3}

{sc A. R. Ashrafi, M. Jalali, M. Ghorbani {rm and} M. V. Diudea}:textit{Computing PI and omega polynomials of an infinite family of fullerenes}, MATCH Commun. Math. Comput. Chem. {bf 60} (3) (2008) $905-916$.

bibitem{dixon}

{sc J. D. Dixon {rm and} B. Mortimer}: textit{Permutation groups}, Graduate Texts in Mathematics, 163. Springer-Verlag, New York 1996.

bibitem{doslik}

{sc T. Dov{s}li'{c}, I. Martinjak, R. v{S}krekovski, S. T. Spuv{z}evi'{c} {rm and} I. Zubac}: textit{ Mostar index}, J. Math. Chem. {bf 56} (2018) $2995-3013$.

bibitem{nn17}

{sc P. W. Fowler, D. E. Manolopoulos, D. B. Redmond {rm and} R. Ryan}: textit{Possible symmetries of fullerenes structures}, Chem. Phys. Lett. {bf 202} (1993) $371-378$.

bibitem{nn2}

{sc M. Ghorbani {rm and} A. R. Ashrafi}: textit{Counting the number of hetero fullerenes}, J. Comput. Theor. Nanosci. {bf 3} (5) (2006) $803-810$.

bibitem{nn12}

{sc M. Ghorbani, A. R. Ashrafi {rm and} M. Hemmasi}: textit{Eccentric connectivity polynomials of fullerenes}, Optoelect. Adv. Mater-Rapid Commun. {bf 3} (12) (2009) $1306-1308$.

bibitem{nn13}

{sc M. Ghorbani {rm and} M. Hemmasi}: textit{The vertex PI and Szeged polynomials of an infinite family of fullerenes}, J. Comput. Theor. Nanosci. {bf 7} (2010) $2405-2410$.

bibitem{nn14}

{sc M. Ghorbani {rm and} M. Jaddi}: textit{Computing counting polynomials of leapfrog fullerenes}, Optoelect. Adv. Mater-Rapid Commun. {bf 4} (4) (2010) $540-543$.

bibitem{nn8}

{sc M. Ghorbani {rm and} M. Jalali}: textit{Counting numbers of permutational isomers of an infinite family of fullerenes}, Studia Ubb. Chemia {bf 2} (2009) $145-152$.

bibitem{nn6}

{sc M. Ghorbani {rm and} M. Jalali}: textit{Counting nubers of permutational isomers of hetero fullerenes}, Dig. J. Nanomat. Bios. {bf 3} (4) (2008) $269-275$.

bibitem{nn19}

{sc M. Ghorbani {rm and} M. Songhori}: textit{On the automorphism group of polyhedral graphs}, Applied Math. Comput. {bf 282} (2016) $237-243$.

bibitem{nn20}

{sc M. Ghorbani {rm and} M. Songhori}: textit{Polyhedral graphs via their automorphism groups}, Applied Math. Comput. {bf 321} (2018) $1-10$.

bibitem{nn18}

{sc M. Ghorbani, M. Songhori, A. R. Ashrafi {rm and} A. Graova'{c}}: textit{Symmetry group of (3,6)-fullerenes}, Fuller. Nanotub. Carbon Nanostruct. {bf 23} (2015) $788-791$.

bibitem{nn11}

{sc M. Jalali {rm and} M. Ghorbani}: textit{On omega polynomial of $C_{40n+6}$ fullerenes}, Studia Ubb. Chemia {bf 4} (2009) $25-32$.

bibitem{kh}

{sc A. Khaksari, M. Hakimi-Nezhaad, O. Ori {rm and} M. Ghorbani}: textit{ A survey of the automorphism groups of some fulleroids}, Fuller. Nanotub. Carbon Nanostruct. {bf 26} (2018) $80-86$.

bibitem{nn1}

{sc H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl {rm and} R. E. Smalley}: textit{ $C_{60}$: Buckminster fullerene}, Nature {bf 318} (1985) $162-163$.




DOI: https://doi.org/10.22190/FUMI2001151G

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)