A NEW PROOF OF A REDUCTION FORMULA FOR THE APPELL SERIES F3 DUE TO BAILEY

Gradimir V. Milovanović, Arjun K. Rathie

DOI Number
https://doi.org/10.22190/FUMI1905849M
First page
849
Last page
854

Abstract


In this short note, we provide a new proof of an interesting and useful reduction formula for the Appell series $F_{3}$  due to Bailey [{\it On the sum of a terminating ${}_3F_2(1)$}, Quart. J. Math. Oxford Ser. (2) {\bf4} (1953), 237--240].

Keywords

Appell series, Humbert series, Whipple summation theorem, reduction formula, special functions

Full Text:

PDF

References


bibitem{1-AAR} {sc G. E. Andrews, R. Askey, R. Roy:} emph{Special Functions}. Cambridge University Press, Cambridge, 1999.

bibitem{2-A} {sc P. Appell:} emph{Sur les fonctiones hyp'ergeometrques de plusieurs variables}. M'em. Sc. Math., Fasc. III, Gauthier-Villars, Paris, 1925.

bibitem{3B} {sc W. N. Bailey:} emph{Generalized Hypergeometric Series}. Cambridge University Press, Cambridge, 1935.

bibitem{4B} {sc W. N. Bailey:} emph{On the sum of a terminating ${}_3F_2(1)$}. Quart. J. Math. Oxford Ser. (2) {bf4} (1953), 237--240.

bibitem{5BS} {sc Yu. A. Brychkov, N. Saad:} emph{On some formulas for the Appell function $F_{3}(a,a',b,b';c;w,z)$. Integral Transf. Spec. Funct.} {bf26},(11) (2015), 910--923.

bibitem{6E} {sc A. Erd'elyi, W. Magnus, F. Oberhettinger, F. G. Tricomi:} emph{Higher Transcendental Functions}, Vol.~1. McGraw-Hill, New York, 1953.

bibitem{7H} {sc P. Humbert:} emph{Sur les fonctions hypercylindriques}, Comptes Rendus de Sciences de l'Acad'emie des Sciences (Paris), {bf 171} (1920), 490--492.

bibitem{GVM14} {sc G. V. Milovanovi'c:} emph{Numerical Analysis and Approximation Theory -- Introduction to Numerical Processes and Solving Equations}, Zavod za udzbenike, Beograd, 2014 (Serbian).

bibitem{8R} {sc E. D. Rainville:} emph{Special Functions}. The Macmillan Company, New York, 1960.

bibitem{MJS} {sc M. J. Schlosser:} emph{Multiple hypergeometric series: Appell series and beyond}. In: Computer Algebra in Quantum Field Theory (C. Schneider and J. Bl"umlein, eds.), pp.~305--324, Texts & Monographs in Symbolic Computation, Springer-Verlag, Wien, 2013.




DOI: https://doi.org/10.22190/FUMI1905849M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)