FUZZY SUBSETS OF THE PHENOTYPES OF F2-OFFSPRING

Madeleine Al-Tahan, Bijan Davvaz

DOI Number
https://doi.org/10.22190/FUMI1904709A
First page
709
Last page
727

Abstract


This paper presents a connection between fuzzy sets, biological inheritance and hyperstructures in which we consider the set of phenotypes of the second generation $F_{2}$ in different types of inheritance, define fuzzy subsets of it and construct a sequence of join spaces associated to each of its types.


Keywords

Hyperstructures; fuzzy subsets; join spaces; hypergroups; automata theory.

Full Text:

PDF

References


P. Corsini, Prolegomena of Hypergroup Theory (Aviani Editor, 1993).

P. Corsini, Join spaces, power sets, fuzzy sets, Proceedings of the FifthInt. Congress of Algebraic Hyperstructures and Appl., 1993, Iasi, Romania, Hadronic Press, 1994.

P. Corsini, A new connection between Hypergroups and Fuzzy Sets, Southeast Asian Bulletin of Mathematics, 27 (2003), 221-229.

P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Advanced in Mathematics, Kluwer Academic Publisher, 2003.

C. Darwin, The Variation of Animals and Plants Under Domestication(1st American edition), New York: Orange Judd and Co. (1868).

B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. viii+200 pp.

B. Davvaz, A. Dehghan Nezhad and M. Heidari, Inheritance examples of algebraic hyperstructures, Information Sciences, 224 (2013), 180-187.

B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.

A. Dehghan Nezhad, S.M. Moosavi Nejad, M. Nadjafikhah and B. Davvaz, A physical example of algebraic hyperstructures: Leptons, Indian Journal of Physics, 86(11) (2012), 1027-1032.

M. Ghadiri, B. Davvaz and R. Nekouian, Hv-Semigroup structure on F 2 -offspring of a gene pool, International Journal of Biomathematics, 5(4) (2012) 1250011 (13 pages).

A. J. F. Griffith et al., it An Introduction to Genetic Analysis, 7th edn. (WH Freeman, New York, 2000).

L. H. Hartwell, L. Hood, M. L. Goldberg, A. E. Reynolds, L. M. Silver and R. C. Veres, Genetics: From Genes to Genomes, 3rd edn. (Mc Graw Hill, 2008).

S. Hosková, J. Chvalina and P. Racková, Transposition hypergroups of Fredholm integral operators and related hyperstructures. Part I, J.Basic Science, 4 (2008), 43-54.

S. Hosková, J. Chvalina and P. Racková, Transposition hypergroups of Fredholm integral operators and related hyperstructures. Part II, J. Basic Science, 4 (2008), 55-60.

J. Jantosciak, Homomorphisms, equivalences and reductions in hypergroups, Riv. Mat. Pura Appl., 9 (1991), 23-47.

J. Jantosciak, Transposition hypergroups: Noncommutative join spaces, J. Algebra, 187 (1997), 97-119.

F. Marty, Sur une generalization de la notion de group, In: 8th Congress Math. Scandenaves, (1934), pp. 45-49.

G. Mendel, Versuche uber Pflanzen-Hybriden, Verh Naturforsheh. Ver. Brunn 4(1866) 3-47 (in English in: J. R. Hortic. Soc. 26 (1901) 1-32.

J. Mittas, Hypergroups canoniques, Math. Balkanica, 2 (1972), 165-179.

B. A. Pierce, Genetics, A conceptual approach, 4th edition, South Western University, New York.

W. Prenowitz, Spherical geometries and multigroups, Canadian J. Math., 2 (1950), 100-119.

W. Prenowitz, A contemporary approach to classical geometry, Amer. Math. Monthly, 68 (1961), part II v+67 pp.

W. Prenowitz and J. Jantosciak, Join Geometries, Springer-Verlag, UTM., 1979.

S. Spartalis, A. Dramalides, and T. Vougiouklis. On Hv-group rings, Algebras Groups and Geometries, 15 (1988), 47-54.

T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Univ. Carolin. Math. Phys. 22(1) (1981), 3-6.

T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, Inc 115 Palm Harber, USA, 1994.

T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Mathematics, 174 (1997), 347-355.

T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Algebraic hyperstructures and applications (Xanthi, 1990), 203–211, World Sci. Publ., Teaneck, NJ, 1991.

L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.




DOI: https://doi.org/10.22190/FUMI1904709A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)