PARTIAL b_{v}(s), PARTIAL v-GENERALIZED AND b_{v}(θ) METRIC SPACES AND RELATED FIXED POINT THEOREMS

ibrahim karahan, irfan isik

DOI Number
https://doi.org/10.22190/FUMI2003621K
First page
621
Last page
640

Abstract


In this paper, we have introduced three new generalized metric spaces called partial $b_{v}\left( s\right) $, partial $v$-generalized and $b_{v}\left(\theta \right) $ metric spaces which extend $b_{v}\left( s\right) $ metricspace, $b$-metric space, rectangular metric space, $v$-generalized metricspace, partial metric space, partial $b$-metric space, partial rectangular $%b $-metric space and so on. We have proved some famous theorems such as Banach, Kannan and Reich fixed point theorems in these spaces. Also, we have given somenumerical examples to support our definitions. Our results generalize several corresponding results in literature.

Keywords

partial $b_{v}(s)$ metric space; $b_{v}(\theta )$ metric space; generalized metric spaces; fixed point theorems; weakly contractive mappings.

Full Text:

PDF

References


Fréchet, M.: Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo 22, 174 (1906)

Matthews, S.G.: Partial metric topology, Annals of the New York Academy of Sciences, 728, 183197 (1994)

George, R., Radenovic, S., Reshma, K.P., Shukla, S.: Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8, 10051013 (2015)

Shukla, S.: Partial b-Metric Spaces and Fixed Point Theorems, Mediterr. J. Math. 11, 703-711 (2014)

Shukla, S.: Partial rectangular b-Metric Spaces and Fixed Point Theorems, The Scientific World Journal, 2014, Article ID 756298, 7 pages (2014)

Kamran, T., Samreen, M., Ain, Q.U.: A generalization of b-metric space and some fixed point theorems, Mathematics, 2017, 5, 19, doi:10.3390/math5020019

Kannan, R.: Some results on fixed points, Bull. Calcutta. Math.Soc., 60,71-76 (1968)

Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst., 30, 2637 (1989)

Branciari A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 3137, (2000)

Mitrovic, Z.D., Radenovic, S.: The Banach and Reich contractions in bv(s)-metric spaces, J. Fixed Point Theory Appl., doi: 10.1007/s11784-017-0469-2

Azam, A., Arshad, M.: Kannan Fixed Point Theorems on Generalized Metric Spaces, J. Nonlinear Sci. Appl. 1(1), 4548 (2008)

Rhoades, B.E.: Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Methods and Applications, 47(4), 26832693 (2001)

Dung, N.V., Hang, V.T.L.: On relaxations of contraction constants and Caristis theorem in b-metric spaces, J. Fixed Point Theory Appl. 18, 267284 (2016)

Mitrovic, Z.D.: On an open problem in rectangular b-metric space. J. Anal. (2017). doi:10.1007/s41478-017-0036-7.

Das, P.: A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sc., 9 (1), 29-33, (2002).




DOI: https://doi.org/10.22190/FUMI2003621K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)