Classification of Conformal Surfaces of Revolution in Hyperbolic 3-Space

Nural Yüksel, Murat Kemal Karacan

DOI Number
https://doi.org/10.22190/FUMI2002333Y
First page
333
Last page
349

Abstract


In this paper, we classify conformal surfaces of revolution in hyperbolic
3-space $\mathbb{H}^{3}(-c^{2})$ satisfying an equation in terms of the position vector field and the Laplace operators with respect to the first,
the second and the third fundamental forms of the surface.


Keywords

hyperbolic 3-space; Laplace operators; fundamental forms of the surface.

Full Text:

PDF

References


E. Abbena, S. Salamon and A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press. 92 (2006).

L. J. Alias, A. Ferrandez and P. Lucas: Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying ∆x = Ax + B. Pacific J. Math. 156 (1992), 201–208.

C. Baikoussis and L. Verstraelen: On the Gauss map of helicoidal surfaces. Rend. Sem. Math. Messina Ser. II 2(16) (1993), 31–42.

M. Bekkar and H. Zoubir: Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying ∆x i = λ i x i . Int. J. Contemp. Math. Sciences. 3(24) (2008), 1173 - 1185.

S. M. Choi: On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space. Tsukuba J. Math. 19 (1995), 351–367.

M. Choi, Y. H. Kim and D. W. Yoon: Some classification of surfaces of revolution in Minkowski 3-space. J. Geom. 104 (2013), 85–106.

.B Y. Chen: A report on submanifold of finite type. Soochow J. Math. 22 (1996), 117–337.

F. Dillen, J. Pas and L. Vertraelen: On surfaces of finite type in Euclidean

-space. Kodai Math. J. 13 (1990), 10–21.

F. Dillen, J. Pas and L. Vertraelen: On the Gauss map of surfaces of revolution. Bull. Inst. Math. Acad. Sinica. 18 (1990), 239–246.

O. J. Garay: n extension of Takahashi’s theorem. Geom. Dedicata. 34 (1990), 105–112.

E. Guler and O. Kisi: The Second Laplace-Beltrami Operator on Rotational Hy-

persurfaces in the Euclidean 4-Space. Mathematica Aeterna. 8(1) (2018), 1–12.

G. Kaimakamis, B. Papantoniou and K Petoumenos: Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆ III r = Ar. Bull.Greek Math.

Soc. 50 (2005), 75–90.

E. P. Lambert: Lorentz invariant spacelike surfaces of constant mean curvature in anti de sitter 3-space. Msc. Thesis, The University of Southern Mississippi, 2015.

S. Lee: Spacelike surfaces of constant mean curvature one in de Sitter 3-space. Illinois Journal of Mathematics. 49(1) (2005), 63–98.

S. Lee and K. Zarske : Surfaces of revolution with constant mean curvature in Hyperbolic 3-space. Differential Geometry - Dynamical Systems (DGDS). 16 (2014),

–218.

S. Lee and J. Martin : Timelike surfaces of revolution with constant mean curvature in de sitter 3-space. International Electronic Journal of Geometry (IEJG). 8 (1) (2015), 116–127.

B. Senoussi and M. Bekk r : Helicoidal surfaces with ∆ J r = Ar in 3-dimensional Euclidean space. Stud. Univ. Babes-Bolyai Math. 60(3) (2015), 437–448.

T. Takahashi : Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan. 18 (1996), 380–385.

J. Vrˇ sek and M. Láviˇ cka: Determining surfaces of revolution from their implicit equations. Journal of Computational and Applied Mathematics. 290 (2015), 125–135.




DOI: https://doi.org/10.22190/FUMI2002333Y

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)