INDEPENDENCE AND PI POLYNOMIALS FOR FEW STRINGS
Abstract
Keywords
Full Text:
PDFReferences
A.R. Ashrafi, B. Manoochehrian, H. Youse-Azari, On the PI polynomial of a graph, Util. Math. 71 (2006) 97-108.
J. L. Arocha, Propriedades del polinomio independiente de un grafo, Revista Ciencias Matematicas, V (1984) 103-110.
J.A.Bandy and U.S.R.Murty, Graph theory, Springer, GTM244, 2008, I.S.B.N: 978-1-84628-969-9.
T. Doslic, A. Loghman, L. Badakhshian, Computing Topological Indices by Pulling a Few Strings, MATCH Commun. Math. Comput. Chem. 67 (2012) 173-190.
I. Gutman and F. Harary, Generalizations of the matching polynomial, Util-itas Math. 24 (1983) 97-106.
C. Hoede and X. Li , Clique polynomials and independent set polynomials of graphs, Discrete Math. 25 (1994) 219-228.
P.V. Khadikar, Padmakar Ivan Index in Nanotechnology, Iranian J. Math. Chem. 1 (2010) 7- 42.
A. Loghman, PI polynomials of product graphs, Appl. Math. Letters, 22(2009) 975-979.
I. Lukovits, General Formulas for the Wiener Index, J. Chem. Inf. Comput.Sci. 31 (1991) 503-507.
L. Lovasz and M.D. Plummer, Matching theory, North-Holland. (1986).
B. Manoochehrian, H. Youse-Azari and A. R. Ashrafi, PI Polynomial of some Benzenoid Graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 653- 664.
DOI: https://doi.org/10.22190/FUMI1904761L
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)