k-TYPE SLANT HELICES FOR SYMPLECTIC CURVE IN 4-DIMENSIONAL SYMPLECTIC SPACE
Abstract
Keywords
Full Text:
PDFReferences
bibitem{5}
{sc A. Ali {rm and} R. Lopez}: textit{Slant helices in Minkowski space
${small E}_{1}^{3}$}. J. Korean Math. Soc. {bf 48} (2011), 159-167.
bibitem{6}
{sc A. Ali, R. Lopez {rm and} M. Turgut}:
textit{$k-$Type partially null and pseudo null slant helices in Minkowski $4-$space}. Math. Commun. {bf 17} (2012), 93-103.
bibitem{7}
{sc A. Ferrandez, A. Gimenu{e}z {rm and} P. Lucas}:
textit{Null generalized helices in Lorentz-Minkowski space}. J. Phys. A: Math. Gen. {bf 35} (2002), 8243-8251.
bibitem{4}
{sc S. Izumiya {rm and} N. Takeuchi}: textit{New special curves and
developable surfaces}. Turk. J. Math. {bf 28} (2004), 153-163.
bibitem{10}
{sc N. Kamran, P. Olver {rm and} K. Tenenblat}:
textit{Local symplectic invariants for curves}. Commun. Contemp. Math. {bf 11} (2) (2009), 165-183.
bibitem{2}
{sc M. A. Lancert}:
textit{M'emoire sur les courbes a double courbure}. M'emoire Present'es a'l Insti tut. {bf 1} (1806), 416-454.
bibitem{1}
{sc M. "{O}nder, M. Kazaz, H. Kocay.{I}u{g}.{I}t {rm and} O. Kilic{c}}:
textit{${B}_{2}$-slant helix in Euclidean $4-$space ${E}^{4}$ }. Int J. Cont. Mat. Sci. {bf 3} (2008), 1433-1440.
bibitem{8}
{sc Z. "{O}zdem.{I}r, .{I}. G"{o}k, F. N. Ekmekc.{I} {rm and} Y. Yayli}:
textit{A new approach on type - 3 slant helix in ${E}^{4}$ }. Gen. Math. Notes. {bf 28} (1) (2015), 40-49.
bibitem{3}
{sc D. J. Struik}:
textit{Lectures on Classical Differential Geometry}. Dover, New York, 1988.
bibitem{9}
{sc F. Valiquette}:
textit{Geometric affine symplectic curve flows in ${R}^{4}$}. Diff. Geo. Appl. {bf 30} (6) (2012), 631-641.
DOI: https://doi.org/10.22190/FUMI2003641C
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)