FAMILY OF ELLIPTIC CURVES E(p,q)‎: ‎y2=x2-p2x+q2

Mehrdad Khazali, Hassan Daghigh

DOI Number
https://doi.org/10.22190/FUMI1904805K
First page
805
Last page
813

Abstract


In this paper we show that for any two primes p and q greater than 5, the
elliptic curve E(p,q) : y2 = x3 − p2x + q2 has rank at least 2. We will also provide two
independent points on E(p,q). Then we will show that, conjecturally, the family {E(p,q)}
contains an infinite subfamily of rank three elliptic curves.


Full Text:

PDF

References


A. Antoniewicz: On A Famaily Of Elliptic Curves., Universitatis Iagellonicae Acta Mathematica, Fasciculus XLIII (2005), 21–32.

E. Brown and T. Mayer: Elliptic Curves From Mordell to Diophantus and Back., Amer. Math. Monthly, 109, Aug-sept, 2002, 639–648.

J. E. Cremona: Algorithms for modular elliptic curves , Cambridge University Press, Springer, 1997.

J. E. Cremona:mwrank. Avaliable from Ftp://euclid.ex.ac.uk/pub/cremona/prog.

H. Daghigh and S. Didari: On the elliptic curves of the form y 2 = x 3 −3px. Bulletin of the Iranian Mathematical Society.40 (2014) 1119-33.

H. Daghigh and S. Didari: On the Elliptic Curves of the Form y 2 = x 3 −pqx. Iranian Journal of Mathematical Sciences and Informatics. 10 (2015) 77–86.

A. Draziotis and V. Konstantinos: Practical solution of the Diophantine equation y 2 = x(x + 2 a p b )(x − 2 a p b ). Math. Comp.75 (2006) 1585.

A. Draziotis and V. Konstantinos: Integer points on the curve Y2= X 3 ±p k X.Math. Comp.75 (2006) 1493–1505.

K. Feng and M. Xiong: On elliptic curves y 2 = x 3 −n 2 x with rank zero. Journal of Number Theory.109(2004) 1-26.

Y. Fujita and N. Terai: Integer Points and Independent Points on the Elliptic Curve y 2 = x 3 − p k x. Tokyo Journal of Mathematics.34(2011)367–381.

Y. Fujita and N. Terai: On the MordellWeil group of the elliptic curve. Journal of Number Theory.132(3)(2012) 448–466.

F. Lemmermeyer and R. Mollin: On Tate-Shafarevich groups of y 2 = x(x 2 − k 2 ). Acta Math.72(2003) 73–80.

A. Schinzel and W. Sierpinski: Sur certaines hypotheses concernant les nombres premiers. Acta Arith.4(1958) 185–208.

J. H. Silverman: The Arithmetic of elliptic curves , Springer, 2009.

W. Stein: Sage open -source mathematical software system. Avaliable from http://www.sagemath.org.

P. Walsh: Maximal ranks and integer points on a family of elliptic curves. Glasnik Matematicki.44(64) (2009) 83–87.

Washington, Lawrence C: Elliptic curves: number theory and cryptography. Chapman and Hall/CRC, 2003.




DOI: https://doi.org/10.22190/FUMI1904805K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)