NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS

Muhammad Aamir Ali, Hüseyin Budak, Zhiyue Zhang

DOI Number
https://doi.org/10.22190/FUMI2004899A
First page
899
Last page
917

Abstract


In this paper, we establish new inequalities of Ostrowski type for co-ordinated convex function by using generalized fractional integral. We also discuss some special cases of our established results.


Keywords

inequalities of Ostrowski type; convex function; generalized fractional integral

Full Text:

PDF

References


M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski type inequal-

ities for functions whose derivatives are s-convex in the second sense, Applied

Mathematics Letters Volume 23, Issue 9, September 2010, Pages 1071-1076.

M. Alomari and M. Darus, Some Ostrowski´ıs type inequalities for convex func-

tions with applications, RGMIA, 13(1) (2010), Article 3. [ONLINE: http://a

jmaa.org/RGMIA/v13n1.php].

N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double in-

tegrals and applications for cubature formulae, Soochow J. Math., 27(1), (2001),

-114.

P. Cerone and S.S. Dragomir, Ostrowski type inequalities for functions whose

derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004),

no. 2, 299-308.

S.S. Dragomir, On Hadamards inequality for convex functions on the co-ordinates

in a rectangle from the plane. Taiwan. J. Math. 4, 775–788 (2001).

S.S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose deriva-

tives are convex, Proceedings of the 4th International Conference on Modelling

and Simulation, November 11-13, 2002. Victoria University, Melbourne, Aus-

tralia. RGMIA Res. Rep. Coll., 5 (2002), Supplement, Article 30. [ONLINE:

http://rgmia.vu.edu.au/v5(E).html]

S. S. Dragomir, N. S. Barnett and P. Cerone, An n-dimensional version of Os-

trowski´ıs inequality for mappings of H¨ older type, RGMIA Res. Pep. Coll., 2(2),

(1999), 169-180.

S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequal-

ities and Applications, RGMIA Monographs, Victoria University, 2000. Online

[http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html].

M. A. Latif, S. Hussain, New inequalities of Ostowski type for co-ordinated convex

functions via fractional integrals, J. Fract. Calc. Appl, 2(2012), no. 9, 1-15.

M. A. Latif, S. Hussain and S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, RGMIA Research Report Collection, 14(2011),

Article 49. [ONLINE:http://www.a jmaa.org/RGMIA/v14.php].

A. M. Ostrowski,

¨

Uber die absolutabweichung einer differentiebaren funktion von

ihrem integralmitelwert, Comment. Math. Helv. 10(1938), 226-227.

B. G. Pachpatte, On an inequality of Ostrowski type in three independent vari-

ables, J. Math. Anal. Appl., 249(2000), 583-591.

B. G. Pachpatte, On a new Ostrowski type inequality in two independent vari-

ables, Tamkang J. Math., 32(1), (2001), 45-49

B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow

J. Math., 32(2), (2006), 317-322.

M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ.

Comenianae, Vol. LXXIX, 1(2010), pp. 129-134.

M.Z. Sarikaya and F. Ertu˘ gral, On the generalized Hermite-Hadamard inequalities,

Annals of the University of Craiova - Mathematics and Computer Science Series,

in press.

M. E. Yildirim, M. Z. Sarikaya, H. BUDAK and H. Yildirim, Some

Hermite-Hadamard type integral inequalities for co-ordinated con-

vex functions via generalized fractional integrals, December 2017,

https://www.researchgate.net/publication/321803898.




DOI: https://doi.org/10.22190/FUMI2004899A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)