NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
Abstract
In this paper, we establish new inequalities of Ostrowski type for co-ordinated convex function by using generalized fractional integral. We also discuss some special cases of our established results.
Keywords
Full Text:
PDFReferences
M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski type inequal-
ities for functions whose derivatives are s-convex in the second sense, Applied
Mathematics Letters Volume 23, Issue 9, September 2010, Pages 1071-1076.
M. Alomari and M. Darus, Some Ostrowski´ıs type inequalities for convex func-
tions with applications, RGMIA, 13(1) (2010), Article 3. [ONLINE: http://a
jmaa.org/RGMIA/v13n1.php].
N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double in-
tegrals and applications for cubature formulae, Soochow J. Math., 27(1), (2001),
-114.
P. Cerone and S.S. Dragomir, Ostrowski type inequalities for functions whose
derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004),
no. 2, 299-308.
S.S. Dragomir, On Hadamards inequality for convex functions on the co-ordinates
in a rectangle from the plane. Taiwan. J. Math. 4, 775–788 (2001).
S.S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose deriva-
tives are convex, Proceedings of the 4th International Conference on Modelling
and Simulation, November 11-13, 2002. Victoria University, Melbourne, Aus-
tralia. RGMIA Res. Rep. Coll., 5 (2002), Supplement, Article 30. [ONLINE:
http://rgmia.vu.edu.au/v5(E).html]
S. S. Dragomir, N. S. Barnett and P. Cerone, An n-dimensional version of Os-
trowski´ıs inequality for mappings of H¨ older type, RGMIA Res. Pep. Coll., 2(2),
(1999), 169-180.
S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequal-
ities and Applications, RGMIA Monographs, Victoria University, 2000. Online
[http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html].
M. A. Latif, S. Hussain, New inequalities of Ostowski type for co-ordinated convex
functions via fractional integrals, J. Fract. Calc. Appl, 2(2012), no. 9, 1-15.
M. A. Latif, S. Hussain and S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, RGMIA Research Report Collection, 14(2011),
Article 49. [ONLINE:http://www.a jmaa.org/RGMIA/v14.php].
A. M. Ostrowski,
¨
Uber die absolutabweichung einer differentiebaren funktion von
ihrem integralmitelwert, Comment. Math. Helv. 10(1938), 226-227.
B. G. Pachpatte, On an inequality of Ostrowski type in three independent vari-
ables, J. Math. Anal. Appl., 249(2000), 583-591.
B. G. Pachpatte, On a new Ostrowski type inequality in two independent vari-
ables, Tamkang J. Math., 32(1), (2001), 45-49
B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow
J. Math., 32(2), (2006), 317-322.
M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ.
Comenianae, Vol. LXXIX, 1(2010), pp. 129-134.
M.Z. Sarikaya and F. Ertu˘ gral, On the generalized Hermite-Hadamard inequalities,
Annals of the University of Craiova - Mathematics and Computer Science Series,
in press.
M. E. Yildirim, M. Z. Sarikaya, H. BUDAK and H. Yildirim, Some
Hermite-Hadamard type integral inequalities for co-ordinated con-
vex functions via generalized fractional integrals, December 2017,
https://www.researchgate.net/publication/321803898.
DOI: https://doi.org/10.22190/FUMI2004899A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)