GENERALIZED BESSEL AND FRAME MEASURES
Abstract
Keywords
Full Text:
PDFReferences
P. G. Casazza, O. Christensen and D. T. Stoeva: Frame expansions in separable Banach spaces J. Math. Anal. Appl. 307 (2005) 710-723.
O. Christensen: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhauser Boston Inc., Boston, MA, 2003.
D. Dutkay, D. Han, Q. Sun and E. Weber: On the Beurling dimension of exponential frames. Adv. Math. 226 (2011) 285-297.
D. Dutkay, D. Han and E. Weber: Bessel sequence of exponential on fractal measures. J. Funct. Anal. 261 (2011) 2529-2539.
D. Dutkay, D. Han and E. Weber: Continuous and discrete Fourier frames for fractal measures. Trans. Amer. Math. Soc. 366 (3) (2014) 1213-1235.
D. Dutkay and P. Jorgensen: Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247 (1) (2007) 110-137.
D. Dutkay and C.-K. Lai: Self-affine spectral measures and frame spectral measures on Rd. Preprint (2015). arXiv:1502.03209.
D. Dutkay and C.-K. Lai: Uniformity of measures with Fourier frames. Adv.Math. 252 (2014) 684-707.
D. Dutkay, C.-K. Lai and Y. Wang: Fourier bases and fourier frames on self-affine measures. Preprint (2016). arXiv:1602.04750.
G. B. Folland: Real analysis. second ed., John Wiley, New York, 1999.
B. Fuglede: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16 (1974) 101-121.
J. R. Giles: Classes of semi-inner product spaces. Trans. Amer. Math. Soc. 129 (1967) 436-446.
X.-G. He, C.-K. Lai and K.-S. Lau: Exponential spectra in L2(). Appl. Comput. Harmon. Anal. 34 (3) (2013) 327-338.
T.-Y. Hu, K.-S. Lau and X.-Y. Wang: On the absolute continuity of a class of invariant measures. proc. Amer. Math. Soc. 130 (3) (2001) 759-767.
J. E. Hutchinson: Fractals and self-similarity. Indiana Univ. Math. J. 30 (5) (1981) 713-747.
P. Jorgensen and S. Pedersen: Dense analytic subspaces in fractal L2-spaces. J. Anal. Math. 75 (1998) 185-228.
Y. Katznelson: An introduction to harmonic analysis. third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.
I. Laba and Y. Wang: On spectral Cantor measures. J. Funct. Anal. 193 (2002) 409-420.
I. Laba and Y. Wang: Some properties of spectral measures. Appl. Comput. Harmon. Anal. 20 (1) (2006) 149-157.
C.-K. Lai: On Fourier frame of absolutely continuous measures. J. Funct. Anal. 261 (10) (2011) 2877-2889.
N. Lev: Fourier frames for singular measures and pure type phenomena. proc. Amer. Math. Soc. 146 (2018) 2883-2896.
G. Lumer: Semi-inner product spaces. Trans. Amer. Math. Soc. 100 (1961) 29-43.
S. Nitzan, A. Olevskii and A. Ulanovskii: Exponential frames on unbounded sets. Proc. Amer. Math. Soc. 144 (1) (2016) 109-118.
J. Ortega-Cerda and K. Seip: Fourier frames. Ann. of Math. 155 (3) (2002) 789-806.
N. K. Sahu and R. N. Mohapatra: Frames in semi-inner product spaces. In: P. N. Agrawal, R. N. Mohapatra, Uaday Singh, H. M. Srivastava (Eds.), Springer Proceedings in Mathematics and Statistics 143, Mathematical analysis and its applications, Springer, New Delhi, 2015, pp. 149-158.
H. Zhang and J. Zhang: Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Appl. Comput. Harmon. Anal. 31 (2011) 1-25.
DOI: https://doi.org/10.22190/FUMI2001217Z
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)