ITERATIVE COMPUTATION FOR SOLVING CONVEX OPTIMIZATION PROBLEMS OVER THE SET OF COMMON FIXED POINTS OF QUASI-NONEXPANSIVE AND DEMICONTRACTIVE MAPPINGS
Abstract
Keywords
Full Text:
PDFReferences
bibitem{2} F. E. Browder: ,, {em Convergenge theorem for sequence of nonlinear operator in Banach spaces}, Math.Z.100(1967) 201-225.
Vol. EVIII, part 2, 1976.
bibitem{9} P.L. Combettes: {em A block-iterative surrogate constraint splitting method for quadratic signal recovery,} IEEE Transactions on Signal Processing 51(7), 1771-1782 (2003).
bibitem{51} C. E. Chidume: {em Geometric Properties of Banach spaces and Nonlinear Iterations}, Springer Verlag Series: Lecture Notes in
Mathematics, Vol. 1965,(2009), ISBN 978-1-84882-189.
bibitem{13} B. Halpern: Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 3 (1967), 957-961.
bibitem{5} I. Hideaki: {em Convergence Analysis of Iterative Methods for
Nonsmooth Convex Optimization over Fixed Point Sets,} Mathematical Programming, October (2015).
bibitem{1} I. Hideaki: {em Fixed point optimization algorithm and its application to power control in CDMA data networks,} Math. Program. 133 (2012) 227-242.
bibitem{no} I. Hideaki: {em Fixed point optimization algorithm and its application to network bandwidth allocation,} Journal of Computational and Applied Mathematics 236 (2012) 1733-1742.
bibitem{p} I. Hideaki, I. Yamada: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping,SIAMJ.Optim.19(2009)1881-1893.
bibitem{r} G. Marino, H.K. Xu: {em Weak and strong convergence theorems for strict pseudo-contractions in
Hilbert spaces }, J. Math. Math. Appl., 329(2007), 336-346.
bibitem{16} A. Moudafi: Viscosity approximation methods for fixed-point problems, J. Math. Anal.
Appl. 241 (2000), 46-55.
bibitem{8} M. Ulbrich: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Space, in: MPS-SIAM Series
on Optimization, 2011.
bibitem{xu66} H.K. Xu: {em Iterative algorithms for nonlinear operators,} J.
London Math. Soc. {bf 66} (2002), no. 2, 240 - 256.
bibitem{22} Y. Yao, H. Zhou, Y. C. Liou: {em Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings,} J. Math. Anal. Appl. Comput. 29 (2009) 383-389.
bibitem{15} S. Wang: {em A general iterative method for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces},
Applied Mathematics Letters, 24(2011): 901 - 907.
DOI: https://doi.org/10.22190/FUMI190815035S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)