ITERATIVE COMPUTATION FOR SOLVING CONVEX OPTIMIZATION PROBLEMS OVER THE SET OF COMMON FIXED POINTS OF QUASI-NONEXPANSIVE AND DEMICONTRACTIVE MAPPINGS

Thierno M. M. Sow

DOI Number
https://doi.org/10.22190/FUMI190815035S
First page
475
Last page
487

Abstract


In this paper, a new iterative method  for solving  convex minimization  problems over the set of common fixed points of quasi-nonexpansive and demicontractive mappings is constructed. Convergence theorems are also proved in Hilbert spaces without any compactness assumption. As an application, we shall utilize our results to solve quadratic optimization  problems involving bounded linear operator. Our theorems are significant improvements on several important recent results.

Keywords

Fixed point algorithm, Convex minimization problem, Quasi-nonexpansive mapping, Demicontractive mappings.

Full Text:

PDF

References


bibitem{2} F. E. Browder: ,, {em Convergenge theorem for sequence of nonlinear operator in Banach spaces}, Math.Z.100(1967) 201-225.

Vol. EVIII, part 2, 1976.

bibitem{9} P.L. Combettes: {em A block-iterative surrogate constraint splitting method for quadratic signal recovery,} IEEE Transactions on Signal Processing 51(7), 1771-1782 (2003).

bibitem{51} C. E. Chidume: {em Geometric Properties of Banach spaces and Nonlinear Iterations}, Springer Verlag Series: Lecture Notes in

Mathematics, Vol. 1965,(2009), ISBN 978-1-84882-189.

bibitem{13} B. Halpern: Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 3 (1967), 957-961.

bibitem{5} I. Hideaki: {em Convergence Analysis of Iterative Methods for

Nonsmooth Convex Optimization over Fixed Point Sets,} Mathematical Programming, October (2015).

bibitem{1} I. Hideaki: {em Fixed point optimization algorithm and its application to power control in CDMA data networks,} Math. Program. 133 (2012) 227-242.

bibitem{no} I. Hideaki: {em Fixed point optimization algorithm and its application to network bandwidth allocation,} Journal of Computational and Applied Mathematics 236 (2012) 1733-1742.

bibitem{p} I. Hideaki, I. Yamada: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping,SIAMJ.Optim.19(2009)1881-1893.

bibitem{r} G. Marino, H.K. Xu: {em Weak and strong convergence theorems for strict pseudo-contractions in

Hilbert spaces }, J. Math. Math. Appl., 329(2007), 336-346.

bibitem{16} A. Moudafi: Viscosity approximation methods for fixed-point problems, J. Math. Anal.

Appl. 241 (2000), 46-55.

bibitem{8} M. Ulbrich: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Space, in: MPS-SIAM Series

on Optimization, 2011.

bibitem{xu66} H.K. Xu: {em Iterative algorithms for nonlinear operators,} J.

London Math. Soc. {bf 66} (2002), no. 2, 240 - 256.

bibitem{22} Y. Yao, H. Zhou, Y. C. Liou: {em Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings,} J. Math. Anal. Appl. Comput. 29 (2009) 383-389.

bibitem{15} S. Wang: {em A general iterative method for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces},

Applied Mathematics Letters, 24(2011): 901 - 907.




DOI: https://doi.org/10.22190/FUMI190815035S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)