ON THE BASIC STRUCTURES OF DUAL SPACE

Buşra Aktaş, Olgun Durmaz, Halit Gündoğan

DOI Number
https://doi.org/10.22190/FUMI2001253A
First page
253
Last page
272

Abstract


Topology studies the properties of spaces that are invariant under any con-tinuous deformation. Topology is needed to examine the properties of the space. Funda-mentally, the most basic structure required to do math in the space is topology. There exists little information on the expression of the basis and topology on dual space. The main point of the research is to explain how to define the basis and topology on dual space Dⁿ. Then, we will study the geometric constructions corresponding to the open balls in D and D², respectively.

Keywords

dual space; dual numbers; topological structure.

Full Text:

PDF

References


C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, 2004.

N. Bourbaki, Elements of Mathematics, General Topology Chapters 1-4, Springer-Verlag Berlin Heidelberg New York, 1989.

A. D. Cambou and N. Menon, Three-Dimensional Structure of a Sheet Crumpled into a Ball, Proc. Natl. Acad. Sci. USA, 108(36) (2011), 14741-14745.

G. Carlsson, Topology and Data, Bulletin of the American Mathematical Society, 46(2) (2009), 255-308.

H. H. Cheng, Programming with Dual Numbers and its Applications in Mechanisms Design, Eng. Comput, 10(4) (1994), 212-229.

W. K. Clifford, Preliminary Sketch of Biquaternions, London Math. Soc., 4(1) (1871), 381-395.

J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd Ed. Prentice-Hall, 2004.

M. Dekker, The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds 2nd Edition, C RC Press, 2002.

E. Eckman, Connect the Shapes Crochet Motifs: Creative Techniques for Joining Motifs of All Shapes, Storey Publishing, 2012.

M. Faber, Invitation to Topological Robotics, European Mathematical Society, University of Durham, Durham, England, 2008.

I. S. Fischer, Dual-Number Methods in Kinematics, Statics and Dynamics, CRC Press LLC, 1999.

A. M. Frydryszak, Dual Numbers and Supersymmetric Mechanics, Czech. J. Phys., 55(11) (2005), 1409-1414.

N. A. Gromov, Contractions and Analytical Continuations of Classical Groups: Unified Approach, Komi Science Center, Syktyvkar (in Russian), 1990.

N. A. Gromov, The Matrix Quantum Unitary Cayley-Klein Groups, J. Phys. A: Math. Gen, 26(1) (1993), L5-L8.

A. P. Kotelnikov, Screw Calculus and Some of its Applications in Geometry and Mechanics, Annals of the Imperial University, Kazan, 1895.

S. Li and Q. J. Ge, Rational Bezier Line-Symmetric Motion, Trans. ASME J. Mech. Design, 127(2) (2005), 222-226.

J. M. McCarthy, An Introduction to Theoretical Kinematics, the MIT Press, London, 1990.

S. A. Naimpally and J. F. Peters, Topology with Applications, Topological Spaces Near and Far, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.

B. M. Stadler, P. F. Stadler, G. P. Wagner and W. Fontana, The Topology of the Possible: Formal Spaces Underlying Patterns of Evolutionary Change, Journal of Theoretical Biology, 213(2) (2001), 241-274.

C. Stephenson, D. Lyon and A. Hübler, Topological Properties of a Self-Assembled Electrical Network via Ab Initio Calculation, Sci. Rep., 7:41621 (2017), 1-8.

E. Study, Geometrie der Dynamen, Druck und Verlag von B.G. Teubner, Leipzig, 1903.

R. M. Wald, A new Type of Gauge Invariance for a Collection of Massles Spin-2 Fields, II. Geometrical Interpretation. Class. Quant. Grav. 4(5) (1987b), 1279-1316.

S. Willard, General Topology, Addison-Wesley, 1970.

G. R. Veldkamp, On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanism and Machine Theory, 11 (1976), 141-156.




DOI: https://doi.org/10.22190/FUMI2001253A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)