SPACELIKE TRANSLATION SURFACES IN MINKOWSKI 4-SPACE E_1^4

Sezgin Büyükkütük, Günay Öztürk

DOI Number
https://doi.org/10.22190/FUMI2003789B
First page
789
Last page
800

Abstract


In the present paper, we consider spacelike translation surfaces in $4$-dimensio\-nal Minkowski space. We characterize such surfaces in terms of their Gaussian curvature and mean curvature functions. We classify flat and minimal spacelike translation surfaces in $\mathbb{E}_{1}^{4}$. 

Keywords

spacelike translation surfaces; Minkowski space; Gaussian curvature.

Full Text:

PDF

References


bibitem{ABBO}

{sc K. Arslan, B. Bayram, B. Bulca and G. "{O}zt"{u}rk}: textit{On

translation surfaces in $4-$dimensional Euclidean space}. Acta Et

Commentationes Universitatis Tartuensis De Mathematics. {bf 20}(2016),123--133.

bibitem{BA}

{sc B. Bulca and K. Arslan}: textit{%

Surfaces Given with the Monge Patch in $%

mathbb{E}^{4}$}.Journal of Mathematical Physics, Analysis, Geometry,{bf 9}(2013), 435--447.

bibitem{BBZ}

{sc Ch. Baba-Hamed, M. Bekkar and H. Zoubir}:

textit{Translation surfaces in

the three-dimensional Lorentz-Minkowski space satisfying $Delta

r_{i}=lambda _{i}r_{i}$}. Int. Journal of Math. Analysis,{bf 4} (2010),

--808.

bibitem{BV}

{sc C. Baikoussis and L. Verstraelen}: textit{

On Gauss map of translation

surfaces}. Rend. Sem. Mat. Messina Ser II, 2015.

bibitem{Ch1}

{sc B.Y. Chen}: textit{Geometry of Submanifolds}.Dekker, New York 1973.

bibitem{CV}

{sc B.Y. Chen, J. Van der Veken}: textit{Marginally trapped surfaces in

Lorentzian space forms with positive relative nullity}. Class. Quantum Grav. {bf 24} (2007), 551--563.

bibitem{CTE}

{sc M. c{C}etin, Y. Tuncer and N. Ekmekci}: textit{Translation surfaces in

Euclidean $3-$space}, Int. Journal of Physical and Mathematical Science

{bf 2} (2011), 49--56.

bibitem{DVVZ}

{sc F. Dillen, L. Verstraelen, L. Vrancken, and G. Zafindratafa}: textit{Classification of Polynomial Translation Hypersurfaces of Finite Type}, Results in Math. {bf 27} (1995), 244--249.

bibitem{FM}

{sc G. Forni and C. Matheus}: textit{Introduction to Teichm"{u}ller theory

and its applications to dynamics of interval exchange transformations, flows

on surfaces and billiards }J. Mod. Dyn., {bf

} (2014), 271--416.

bibitem{G}

{sc W. Geomans}: textit{Surfaces in three-dimensional Euclidean and

Minkowski space, in particular a study of Weingarten surfaces}. PhD Thesis,

Katholieke Universiteit Leuven-Faculty of Science, 2010.

bibitem{GSCMS}

{sc J. Glymph, D. Schelden, C. Ceccato, J. Mussel, H. Schober}: textit{A

parametric strategy for free-form glass structures using quadrilateral

planar facets}. Automation in Construction,

{bf 13} (2004), 187--202.

bibitem{GM1}

{sc G. Gancgev and V. Milousheva}: textit{An invariant theory of Marginally

Trapped Surfaces in four-dimensional Minkowski space}. Journal of

Mathematical Physics,{bf

} (2012), 033705.

bibitem{GM2}

{sc G. Gancgev and V. Milousheva}:

textit{An invariant theory of spacelike

surfaces in the four-dimensional Minkowski space}.

Pliska Stud. Math. Bulgar. {bf 21}

(2012), 177--200.

bibitem{GRS}

{sc J.M. Gutierrez Nunez, M.C. Romero Fuster and F. Sanchez-Bringas:

textit{Codazzi Fields on Surfaces Immersed in Euclidean $4-$%

spaces}. Osaka J. Math. {bf 45} (2008), 877--894.

bibitem{HO}

{sc S. Heasen and M. Ortega}: textit{Marginally trapped surfaces in Minkowski $%

-$space invariant under a rotation subgroup of the Lorentz group}. Gen

Relativ Gravit. {bf 41} (2009), 1819--1834.

bibitem{KO}

{sc .{I}. Kic{s}i and G. "{O}zt"{u}rk}: textit{ A new approach to canal

surface with parallel transport frame}. Int. J. Geom. Methods Mod. Phys.

{bf 14} (2017), 1750026.

bibitem{O}

{sc R. Osserman}: textit{Global properties of minimal surfaces in $mathbb{E}%

^{3}$ and $mathbb{E}^{n}$}. Ann. of Math. {bf 80} (1964), 340--364.

bibitem{P}

{sc J. Perez}: textit{A new golden age of minimal surfaces}. Notices of the

AMS {bf 64} (2017), 347--358.

bibitem{S}

{sc H.F. Scherk}: textit{Bemerkungen "{u}ber die kleinste Flache innerhalb

gegebener Grenzen}. J. Reine Angew. Math. (1835), 185--208.

bibitem{VWY}

{sc L. Verstraelen, J. Walrave and S. Yaprak}: textit{The Minimal Translation

Surface in Euclidean Space}. Soochow J. Math. {bf 20} (1994), 77--82.

}




DOI: https://doi.org/10.22190/FUMI2003789B

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)