REFINEMENTS AND REVERSES OF HÖLDER-MCCARTHY OPERATOR INEQUALITY VIA A CARTWRIGHT-FIELD RESULT

Sever S. Dragomir

DOI Number
https://doi.org/10.22190/FUMI2003815D
First page
815
Last page
823

Abstract


By the use of a classical result of Cartwright and Field we obtain in this paper some new refinements and reverses of Hölder-McCarthy operator inequality in the case p 2 (0; 1). A comparison for the two upper bounds obtained showing that neither of them is better in general, is also performed.


Keywords

H\"{o}lder-McCarthy operator inequality; selfadjoint operator; Hilbert space; nonnegative operator.

Full Text:

PDF

References


bibitem{CF}

{sc D. I. Cartwright, M. J. Field}: textit{A refinement of the arithmetic

mean-geometric mean inequality}, Proc. Amer. Math. Soc., textbf{71}

(1978), 36-38.

bibitem{D}

{sc S. S. Dragomir}: textit{ A note on Young's inequality}, Preprint

RGMIA Res. Rep. Coll. textbf{18} (2015), Art. 126. [texttt{%

http://rgmia.org/papers/v18/v18a126.pdf].}

bibitem{D1}

{sc S. S. Dragomir}: textit{ A note on new refinements and reverses of

Young's inequality}, Preprint RGMIA Res. Rep. Coll. textbf{18}

(2015), Art. . [texttt{http://rgmia.org/papers/v1].}

bibitem{D2}

{sc S. S. Dragomir}: textit{Some reverses of the Jensen inequality for

functions of selfadjoint operators in Hilbert spaces}, J. Inequal. &

Appl., Volume textbf{2010}, Article ID 496821, 15 pages

doi:10.1155/2010/496821. Preprint RGMIA textit{Res. Rep. Coll.}, textbf{11%

} (2008), Supliment. Art. 15. texttt{[Online

http://rgmia.org/papers/v11e/RevJensenOp.pdf].}

bibitem{SSDBook}

{sc S. S. Dragomir}: textit{Operator Inequalities of the

Jensen, v{C}ebyv{s}ev and Gr"{u}ss Type}, Springer Briefs in Mathematics,

Springer, 2012.

bibitem{FIN}

{sc M. Fujii, S. Izumino, R. Nakamoto}: textit{Classes of operators

determined by the Heinz-Kato-Furuta inequality and the H"{o}lder-McCarthy

inequality}. Nihonkai Math. J. textbf{5} (1994), no. 1, 61--67.

bibitem{FINS}

{sc M. Fujii, S. Izumino , R. Nakamoto, Y. Seo}: textit{Operator

inequalities related to Cauchy-Schwarz and H"{o}lder-McCarthy inequalities},

Nihonkai Math. J. textbf{8} (1997), 117-122.

bibitem{F}

{sc T. Furuta}: textit{Extensions of H"{o}lder-McCarthy and Kantorovich

inequalities and their applications}. Proc. Japan Acad. Ser. A Math.

Sci. textbf{73} (1997), no. 3, 38--41.

bibitem{F1}

{sc T. Furuta}: textit{ Operator inequalities associated with H"{o}%

lder-McCarthy and Kantorovich inequalities}. J. Inequal. Appl.

textbf{2} (1998), no. 2, 137--148.

bibitem{F2}

{sc T. Furuta}: textit{ The H"{o}lder-McCarthy and the Young inequalities

are equivalent for Hilbert space operators}. Amer. Math. Monthly

textbf{108} (2001), no. 1, 68--69.

bibitem{KM1}

{sc F. Kittaneh, Y. Manasrah}: textit{ Improved Young and Heinz

inequalities for matrix}, J. Math. Anal. Appl. textbf{361} (2010),

-269.

bibitem{KM2}

{sc F. Kittaneh, Y. Manasrah}: textit{ Reverse Young and Heinz

inequalities for matrices}, Linear Multilinear Algebra, textbf{59}

(2011), 1031-1037.

bibitem{LWZ}

{sc W. Liao, J. Wu, J. Zhao}: textit{ New versions of reverse Young and

Heinz mean inequalities with the Kantorovich constant}, Taiwanese J.

Math. textbf{19} (2015), No. 2, pp. 467-479.

bibitem{LC}

{sc C.-S. Lin, Y. J. Cho}: textit{ On H"{o}lder-McCarthy-type

inequalities with powers}. J. Korean Math. Soc. textbf{39} (2002),

no. 3, 351--361.

bibitem{LC1}

{sc C.-S. Lin a, Y. J. Cho}: textit{ On Kantorovich inequality and H"{o}%

lder-McCarthy inequalities}. Dyn. Contin. Discrete Impuls. Syst. Ser.

A Math. Anal. textbf{11} (2004), no. 4, 481--490.

bibitem{MC}

{sc C. A. McCarthy}: textit{ $c_{p}$}, Israel J. Math. textbf{5}

(1967), 249--271.

bibitem{FMPS}

{sc J. Pev{c}ari'{c}, T. Furuta, J. Mi'{c}i'{c} Hot, Y.

Seo}: textit{Mond-Pev{c}ari'{c} Method in Operator inequalities.

Inequalities for Bounded Selfadjoint Operators on a Hilbert Space.}

Monographs in Inequalities, 1. ELEMENT, Zagreb, 2005. xiv+262 pp.+loose

errata. ISBN: 953-197-572-8

bibitem{S}

{sc W. Specht}: textit{ Zer Theorie der elementaren Mittel}, Math. Z.%

, textbf{74} (1960), pp. 91-98.

bibitem{T}

{sc M. Tominaga}: textit{ Specht's ratio in the Young inequality},

Sci. Math. Japon., textbf{55} (2002), 583-588.




DOI: https://doi.org/10.22190/FUMI2003815D

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)