SOME NOTES ON KENMOTSU MANIFOLD

Halil İbrahim Yoldaş, Erol Yasar

DOI Number
https://doi.org/10.22190/FUMI2004949Y
First page
949
Last page
961

Abstract


In the present paper, we deal with a Kenmotsu manifold $M$. Firstly, we study the notion of torse-forming vector field on such a manifold. Then, we investigate some curvature conditions such as $Q.\mathcal{M}=0$ and $C.Q=0$ on such a manifold and obtain some necessary conditions for such a manifold given as to be Einstein and $\eta-$Einstein. Also, we study a Kenmotsu manifold $M$ admitting a Ricci soliton and give an example for this manifold.

Keywords

Kenmotsu manifold; torse-forming vector field; Einstein manifold; Ricci solition.

Full Text:

PDF

References


G. Ayar, M. Yıldırım: Ricci Solitons and Gradient Ricci Solitons on Nearly

Kenmotsu Manifolds. Facta Univ. Ser. Math. Inform. 34 (3) (2019), 503–510.

A. M. Blaga, M. Crasmareanu: Torse-forming η−Ricci Solitons in Almost

Paracontact η− Einstein Geometry. Filomat. 31 (2) (2017), 499–504.

D. E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in

Mathematics, 509, Springer-Verlag, Berlin, 1976.

D. E. Blair, J. S. Kim , M. M. Tripathi : On the Concircular Curvature Tensor

of a Contact Metric Manifold. J. Korean Math. Soc. 42 (5) (2005), 883–992.

B.-Y. Chen: Classification of Torqued Vector Fields and Its Applications to Ricci

Solitons. Kragujevac J. Math. 41 (2) (2017), 239–250.

B.-Y. Chen : Some Results on Concircular Vector Fields and Their Applications

to Ricci Solitons. Bull. Korean Math. Soc. 52 (5) (2015), 1535–1547.

J. T. Cho, R. Sharma: Contact Geometry and Ricci Solitons. Int. J. Geom.

Methods Mod. Phys. 7 (6) (2010), 951–960.

M. Crasmareanu: Scalar Curvature for Middle Planes in Odd-Dimensional

Torse-forming Amost Ricci Solitons. Kragujevac J. Math. 43 (2) (2019), 275–

A. Ghosh: Kenmotsu 3-Metric as a Ricci Soliton. Chaos, Solitons & Fractals

(8) (2011), 647–650.

A. Ghosh: Ricci Soliton and Ricci Almost Soliton within the Framework of

Kenmotsu Manifold. Carpathian Math. Publ. 11 (1) (2019), 56–69.

R. S. Hamilton: The Ricci Flow on Surfaces, Mathematics and General Rela-

tivity (Santa Cruz, CA, 1986). Contemp. Math. A.M.S. 71 (1988), 237–262.

S. K. Hui, S. K. Yadav, A. Patra: Almost Conformal Ricci Solitons on

f−Kenmotsu Manifolds. Khayyam J. Math. 5 (1) (2019) 89–104.

K. Kenmotsu: A Class of Almost Contact Riemannian Manifolds. Tohoku Math.

J. 24 (1972), 93–103.

Y. C. Mandal, S. K. Hui: Yamabe Solitons with Potential Vector Field as

Torse-forming. CUBO 20 (3) (2018), 37–47.

S ¸. E. Meric ¸, E. Kılıc ¸: Riemannian Submersions Whose Total Manifolds Admit

a Ricci Soliton. Int. J. Geom. Methods Mod. Phys. 16 (12) (2019), 1950196.

A. Mihai, I. Mihai: Torse forming Vector Fields and Exterior Concurrent

Vector Fields on Riemannian Manifolds and Applications. J. Geom. Phys. 73

(2013), 200–208.

D. S. Patra: Ricci Solitons and Ricci Almost Solitons on Para-Kenmotsu Man-

ifold. Bull. Korean Math. Soc. 56 (5) (2019), 1315–1325.

G. P. Pokhariyal, R. S. Mishra: Curvature Tensor and Their Relavistic

Significance II. Yokohama Math. J. 19 (1971) 97–103.

D. G. Prakasha, K. Mirji: On the M−Projective Curvature Tensor of a

(k,µ)−Contact Metric Manifold. Facta Univ. Ser. Math. Inform. 32 (1) (2017),

–128.

R. Sharma: Certain Results on K-Contact and (k,µ)−Contact Manifolds. J.

Geom. 89 (2008), 138–147.

Y. Wang, X. Liu: Ricci Solitons on Three-Dimensional η−Einstein Almost

Kenmotsu Manifolds. Taiwanese J. Math. 19 (1) (2015), 91–100.

K. Yano: On Torse-forming Direction in a Riemannian Space. Proc. Imp. Acad.

Tokyo, 20 (1944), 340–345.

K. Yano, M. Kon: Structures on Manifolds. Series in Mathematics, World

Scientific Publishing, Springer, 1984.

H. ˙ I. Yoldas ¸, S ¸. E. Meric ¸, E. Yas ¸ar: On Generic Submanifold of Sasakian

Manifold with Concurrent Vector Field. Commun. Fac. Sci. Univ. Ank. Ser. A1

Math. Stat. 68 (2) (2019), 1983-1994.

H. ˙ I. Yoldas ¸, S ¸. E. Meric ¸, E. Yas ¸ar: On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics, 49

(2) (2020), 843-853.




DOI: https://doi.org/10.22190/FUMI2004949Y

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)