FIXED POINT THEOREMS USING IMPLICIT RELATION IN PARTIAL METRIC SPACES
Abstract
Keywords
Full Text:
PDFReferences
bibitem{AKT11} {sc T. Abdeljawad, E. Karapinar {rm and} K. Tas}: textit{Existence and uniqueness of common fixed point partial metric spaces}, Appl. Math. Lett. in press (doi:10.1016/j.aml.2011.05.014).
bibitem{ASS10} {sc I. Altun, F. Sola {rm and} H. Simsek}: textit{Generalized contractions on partial metric spaces}, Topology Appl. {bf 157} (2010), 2778--2785.
bibitem{AE11} {sc I. Altun {rm and} A. Erduran}: textit{Fixed point theorems for monotone mappings on partial metric spaces}, Fixed Point Theory Appl. {bf 2011} (2011), Article ID 508730, 10 pages.
bibitem{AAV12} {sc H. Aydi, M. Abbas {rm and} C. Vetro}: textit{Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces}, Topology and Its Appl. {bf 159} (2012), No. 14, 3234--3242.
bibitem{B22} {sc S. Banach}: textit{Surles operation dans les ensembles
abstraits et leur application aux equation integrals}, Fund. Math.
{bf 3} (1922), 133--181.
bibitem{C72} {sc S. K. Chatterjae}: textit{Fixed point theorems
compactes}, Rend. Acad. Bulgare Sci. {bf 25} (1972), 727--730.
bibitem{K69} {sc R. Kannan}: textit{Some results on fixed point
theorems}, Bull. Calcutta Math. Soc. {bf 60} (1969), 71--78.
bibitem{KY11} {sc E. Karapinar {rm and} U. Y$ddot{u}$ksel}: textit{Some common fixed point theorems in partial metric space}, J. Appl. Math. {bf 2011}, Article ID: 263621, 2011.
bibitem{KE11} {sc E. Karapinar {rm and} Inci M. Erhan}: textit{Fixed point theorems for operators on partial metric spaces}, Appl. Math. Lett. {bf 24} (2011), 1894--1899.
bibitem{K} {sc E. Karapinar}: textit{Weak $phi$-contraction on partial metric spaces}, J. Comput. Anal. Appl. (in press).
bibitem{K01} {sc H. P. A. K$ddot{u}$nzi}: textit{Nonsymmetric distances and their associated topologies about the origins of basic ideas in the area of asymptotic topology}, Handbook of the History Gen. Topology (eds. C.E. Aull and R. Lowen), Kluwer Acad. Publ., {bf 3} (2001), 853--868.
bibitem{M92} {sc S. G. Matthews}: textit{Partial metric topology}, Research report 2012, Dept. Computer Science, University of Warwick, 1992.
bibitem{M94} {sc S. G. Matthews}: textit{Partial metric topology}, Proceedings of the 8th summer conference on topology and its applications, Annals of the New York Academy of Sciences, {bf 728} (1994), 183--197.
bibitem{NKRK12} {sc H. K. Nashine, Z. Kadelburg, S. Radenovic {rm and} J. K. Kim}: textit{Fixed point theorems under Hardy-Rogers contractive conditions on $0$-complete ordered partial metric spaces}, Fixed Point Theory Appl. {bf 2012} (2012), 1--15.
bibitem{OV04} {sc S. Oltra {rm and} O. Valero}: textit{Banach's fixed point theorem for partial metric spaces}, Rend. Istit. Mat. Univ. Trieste {bf 36} (2004), 17--26.
bibitem{R71} {sc S. Reich}: textit{Some remarks concerning contraction mappings}, Canad. Math. Bull. {bf 14} (1971), 121--124.
bibitem{S03} {sc M. Schellekens}: textit{A characterization of partial metrizibility: domains are quantifiable}, Theoritical Computer Science, {bf 305(1-3)} (2003), 409--432.
bibitem{V05} {sc O. Vetro}: textit{On Banach fixed point theorems for partial metric spaces}, Appl. Gen. Topology {bf 6} (2005), No. 12, 229--240.
bibitem{W06} {sc P. Waszkiewicz}: textit{Partial metrizibility of continuous posets}, Mathematical Structures in Computer Science {bf 16(2)} (2006), 359--372.
bibitem{YSRI20} {sc M. Younis, D. Singh, S. Radenovi$acute{c}$ {rm and} M. Imdad}: textit{Convergence theorems via generalized contractions and its applications}, Filomat {bf 34(3)} (2020).
bibitem{YSGGR19} {sc M. Younis, D. Singh, D. Gopal, A. Goyal {rm and} M. S. Rathore}: textit{On applications of generalized $F$-contraction to differential equations}, Nonlinear Funct. Anal. Appl. {bf 24(1)} (2019), 155--177.
bibitem{YSP19} {sc M. Younis, D. Singh {rm and} A. Petrusel}: textit{Applications of graph Kannan mappings to the damped spring-mass system and deformation of an elastic beam}, Discrete Dynamics in Nature and Society, vol. {bf 2019}, Article ID 1315387, 9 pages, 2019. (doi.org/10.1155/2019/1315387).
bibitem{YSG19} {sc M. Younis, D. Singh {rm and} A. Goyal}: textit{A novel approach of graphical rectangular $b$-metric spaces with an application to the vibrations of a vertical heavy hanging cable}, J. Fixed Point Theory Appl. {bf 21(1):33}, (2019).
bibitem{YSAJ19} {sc M. Younis, D. Singh, M. Asadi {rm and} V. Joshi}: textit{Results on contractions of Reich type in graphical $b$-metric spaces with applications}, Filomat {bf 33(17)} (2019), 5723--5735.
DOI: https://doi.org/10.22190/FUMI2003857S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)