ON THE FIXED-CIRCLE PROBLEM

Ufuk Çelik, Nihal Özgur

DOI Number
https://doi.org/10.22190/FUMI2005273C
First page
1273
Last page
1290

Abstract


In this paper, we focus on the geometric properties of fixed-points of a self-mapping and obtain new solutions to a recent problem called "fixed-circle problem" in the setting of an S-metric space. For this purpose, we develop various techniques by defining new contractive conditions and using some auxiliary functions. Furthermore, we present new examples to support our theoretical results.


Keywords

fixed-points; S-metric space; self-mapping.

Full Text:

PDF

References


bibitem{Alolaiyan} H. Alolaiyan, B. Ali, and M. Abbas, emph{Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications}. An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 27 (2019), no. 1, 5-33.

bibitem{Bojor} F. Bojor, emph{Fixed points of Kannan mappings in metric spaces endowed with a graph}, An. c{S}tiinc{t}. Univ.

"Ovidiustextquotedblright Constanc{t}a Ser. Mat. 20 (2012), no. 1, 31-40.

bibitem{Ciric} Lj. B. Ciric, emph{A generalization of Banach's contraction principle}textit{,} Proc. Amer. Math. Soc. 45 (1974), 267-273.

bibitem{Chaipornjareansri} S. Chaipornjareansri, emph{Fixed point theorems for }$Fw$emph{-contractions in complete s-metric spaces}, Thai J. Math. (2016), Special issue, 98-109.

bibitem{Fulga} A. Fulga, E. Karapi nar, textit{Revisiting of some

outstanding metric fixed point theorems via }$E$textit{contraction}. An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 26

(2018), no. 3, 73-98.

bibitem{Gupta} A. Gupta, emph{Cyclic contraction on }$S$emph{-metric space}, Int. J. Anal. Appl. 3 (2013), no. 2, 119-130.

bibitem{Hieu-Ly-Dung} N. T. Hieu, N. T. Ly and N. V. Dung, emph{A generalization of '{C}iri'{c} quasi-contractions for maps on }$S$emph{-metric spaces}, Thai J. Math. 13 (2015), no. 2, 369-380.

bibitem{Karapinar} E. Karapi nar, A-F. Rold'{a}n-L'{o}pez-de-Hierro, B. Samet, emph{Matkowski theorems in the context of quasi-metric spaces and consequences on }$G$emph{-metric spaces}, An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 24 (2016), no. 1, 309-333.

bibitem{Mlaiki S metric} N. Mlaiki, $alpha $textit{-}$psi $textit{-}emph{contractive mapping on }$S$emph{-metric space}, Math. Sci. Lett. 4 (2015), no. 1, 9-12.

bibitem{Mlaiki} N. Mlaiki, U. c{C}elik, N. Tac{s}, N. Y. "{O}zg"{u}r and A. Mukheimer, emph{Wardowski type contractions and the fixed-circle problem on S-metric spaces}, J. Math. 2018, Art. ID 9127486, 9 pp.

bibitem{Mlaiki-Axioms} N. Mlaiki, N. Tac{s} and N. Y. "{O}zg"{u}r, emph{On the fixed-circle problem and Khan type contractions}, Axioms 7 (2018), 80.

bibitem{ozgur-aip} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some fixed-circle theorems and discontinuity at fixed circle}, AIP Conference Proceedings 1926, 020048 (2018).

bibitem{Ozgur-mathsci} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some new contractive mappings on }$S$emph{-metric spaces and their relationships with the mapping}textit{ }$(S25)$, Math. Sci. (Springer) 11 (2017), no. 1, 7-16.

bibitem{Ozgur-Tas-Celik} N. Y. "{O}zg"{u}r, N. Tac{s} and U. c{C}elik, emph{New fixed-circle results on }$S$emph{-metric spaces}, Bull. Math. Anal. Appl., 9 (2017), no. 2, 10-23.

bibitem{Ozgur-Tas-chapter} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some generalizations of fixed point theorems on }$S$emph{- metric spaces}, Essays in Mathematics and Its Aplications in Honor of Vladimir Arnold, New York, Springer, 2016.

bibitem{Ozgur-Tas-circle-thesis} N. Y. "{O}zg"{u}r and N. Tac{s}, Fixed-circle problem on $S$-metric spaces with a geometric viewpoint, Facta Universitatis. Series: Mathematics and Informatics 34 (3) (2019), 459-472.

bibitem{Ozgur-Tas-malaysian} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some fixed-circle theorems on metric spaces}, Bull. Malays. Math. Sci. Soc. 42 (4) (2019), 1433-1449.

bibitem{Ozgur-Tas-vesnik} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some fixed point theorems on }$S$emph{-metric spaces}, Mat. Vesnik 69 (2017), no. 1, 39-52.

bibitem{Picard} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{The Picard theorem on }$S$emph{-metric spaces}, Acta Mathematica Scientia 38 (2018), no. 4, 1245-1258.

bibitem{Pant-Ozgur-Tas} R. P. Pant, N. Y. "{O}zg"{u}r and N. Tac{s}, emph{On Discontinuity Problem at Fixed Point}, Bull. Malays. Math. Sci. Soc. (2017), in press.

bibitem{Sedgi-Shobe-Aliouche} S. Sedghi, N. Shobe and A. Aliouche, emph{A generalization of fixed point theorems in }$S$emph{-metric spaces}, Mat. Vesnik 64 (2012), no. 3, 258-266.

bibitem{Sedghi-Dung} S. Sedghi and N. V. Dung, textit{Fixed point theorems on }$S$textit{-metric spaces}, Mat. Vesnik 66 (2014), no. 1, 113-124.

bibitem{Souayah} N. Souayah, emph{A fixed point in partial }$S_{b}$emph{-metric spaces}. An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 24 (2016), no. 3, 351-362.

bibitem{Tas} N. Tac{s}, emph{Suzuki-Berinde type fixed-point and fixed-circle results on }$S$emph{-metric spaces}, J. Linear Topol. Algebra 7 (2018), no. 3, 233-244.

bibitem{Tas-fbed} N. Tac{s}, emph{Various types of fixed-point theorems on }$S$emph{-metric spaces}, J. BAUN Inst. Sci. Technol. 20 (2018), no. 2, 211-223.

bibitem{Tas math} N. Tac{s}, N. Y. "{O}zg"{u}r and N. Mlaiki, emph{New types of }$F_{C}$emph{-contractions and the fixed-circle problem}, Mathematics, 6 (2018), no. 10, 188.

bibitem{Tas notes} N. Tac{s} and N. Y. "{O}zg"{u}r, emph{Common fixed points of continuous mappings on }$S$emph{-metric spaces}, Mathematical Notes 104 (2018), no. 4, 587-600.

bibitem{Wardowski} D. Wardowski, emph{Fixed points of a new type of contractive mappings in complete metric spaces}, Fixed Point Theory Appl. 2012, 2012:94, 6 pp.




DOI: https://doi.org/10.22190/FUMI2005273C

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)