The Levinson-Type Formula for a class of Sturm-Liouville Equation
Abstract
The boundary value problem
\[-{\psi}''+q(x)\psi={\lambda}^2 \psi, \quad 0<x<\infty,\]
\[{\psi}'(0)-(\alpha_{0}+\alpha_{1}\lambda){\psi}(0)=0 \]
is considered, where $\lambda$ is a spectral parameter, $ q(x) $ is real-valued function such that
\begin{equation*}
\int\limits_{0}^{\infty}(1+x)|q(x)|dx<\infty
\end{equation*}
with $\alpha_{0}, \alpha_{1}\geq0$ ( $\alpha_{0},\alpha_{1}\in \mathbb{R}$).
In this paper, for the above-mentioned boundary value problem, the scattering data is considered and the characteristics properties (such as continuity of the scattering function $ S(\lambda) $ and giving the Levinson-type formula) of this data are studied.
{\small \bf Keywords. }{Scattering data, scattering function, Gelfand-Levitan-Marchenko equation, Levinson-type formula.}
Keywords
Full Text:
PDFReferences
S. A. Alimov: A. N. Tihonovs works on inverse problems for the Sturm-Liouville equation. Matematicheskikh Nauk, 31 (6) (1976) 84{88; English Trans: English translation in Russian Mathematical Surveys Uspekhi 31 (6) (1976) 87-92;
D. S. Cohen: An integral transform associated with boundary conditions containing an eigenvalue parameter. SIAM Journal on Applied Mathematics, 14 (5)(1966) 1164{1175.
C. T. Fulton: Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions. Proceedings of the Royal Society of Edinburgh. Section
A, 87 (1-2) (1980) 1-34.
C. T. Fulton: Two point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proceedings of the Royal Society of Edinburgh Section A. 77 (3-4) (1977) 293-308.
G. Freiling, V. A. Yurko: Inverse Sturm-Liouville problems and their applications. NOVA Science Publishers, New York, 2001.
B. M. Levitan: On the solution of the inverse problem of quantum scattering theory. Mathematical Notes, 17 (4) (1975) 611-624.
B. M. Levitan: Inverse Sturm-Liouville Problems. VSP, Zeist:The Netherlands,1987.
V. E. Lyantse: On a dierential equations with spectral singularities I. Matematicheskii Sbornik, 106 (4) (1964) 521-561.
Kh. R. Mamedov: On the inverse problem for Sturm-Liouville operator with a nonlinear spectral parameter in the boundary condition. Journal of Korean Mathematical Society, 46 (6) (2009) 1243-1254.
Kh. R. Mamedov: Uniqueness of the solution of the inverse problem of scattering theory for the Sturm-Liouville operator with a spectral parameter in the boundary condition. Mathematical Notes, 74 (1-2) (2003) 136-140.
Kh. R. Mamedov: On an inverse scattering problem for a discontinuous Sturm-Liouville equation with a spectral parameter in the boundary condition. Boundary Value Problems, 2010 (2010), doi:10.1155/2010/171967.
Kh. R. Mamedov and A. Col: On the inverse problem of scattering theoryfor a class of systems of Dirac equations with discontinuous coecient. European Journal of Pure and Applied Mathematics, 1 (3) (2008) 21-32.
Kh. R. Mamedov, A. Col: On an inverse scattering problem for a class Dirac operator with discontinuous coecient and nonlinear dependence on the spectral parameter in the boundary condition. Mathematical Methods in the Applied Sciences, 35 (14) (2012) 1712-1720.
Kh. R. Mamedov, H. Menken: The Levinson-type formula for a boundary value problem with a spectral parameter in the boundary condition. The Arabian Journal of Science and Engineering, 34 (1A) (2009) 219-226.
V. A. Marchenko: Sturm-Liouville operators and applications, vol.22 of Operator theory: Advances and applications. Birkhauser: Basel, Switzerland, 1986.
V. A. Marchenko: On reconstruction of the potential energy from phases of the scattered waves. Doklady Akademii Nauk SSSR, 104 (1955) 695-698.
O. Mzrak, Kh. R. Mamedov, A. M. Akhtyamov: Characteristic properties of scattering data of a boundary value problem. Filomat, 31 (12) (2017) 3945-3951.
M. A. Naimark: Linear Dierential Operators. Vol. II: Linear Dierential Operators in Hilbert Space. George G. Harrap & Company Limited: London, 1968.
E. A. Pocheykina-Fedotova: n the inverse problem of boundary problem for second order dierential equation on the half line. Izvestiya Vuzov, 17 (1972)75{84.
A. N. Tikhonov, A. A. Samarskii: Equations of mathematical physics. Pergamon:Oxford, 1963.
V. A. Yurko: Reconstruction of pencils of dierential operators on the half-line. Mathematical Notes, 67 (2) (2000) 261{265.
V. A. Yurko: An inverse problem for dierential operator pencils. Sbornik: Mathematics, 191 (10) (2000) 1561{1586.
V. A. Yurko: Method of spectral mappings in the inverse problem theory, inverse and ill-posed problem series. VSP, Utrecht, Netherlands, 2002.
DOI: https://doi.org/10.22190/FUMI2004219G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)