ITERATIVE APPROXIMATIONS FOR GENERALIZED NONEXPANSIVE MAPPINGS USING K ITERATION PROCESS IN BANACH SPACES
Abstract
Let $H$ be a nonempty subset of a Banach space $X$. A mapping
$T:H\rightarrow H$ is said to be generalized $\alpha$-nonexpansive if there is a real
number $\alpha\in[0,1)$ such that for all $x,y\in H$, we have
\begin{eqnarray*}
\frac{1}{2}||x-Tx||\leq||x-y||
\end{eqnarray*}
\begin{eqnarray*}
||Tx-Ty||\leq\alpha||Tx-Ty||+\alpha||Ty-x||+(1-2\alpha)||x-y||.
\end{eqnarray*}
In this paper, we obtain some weak and strong convergence theorems
for such mappings using K-iteration process in uniformly convex Banach space setting. Our results extend and improve many results in the literature.
Keywords
Full Text:
PDFReferences
F. E. Browder: Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA. 54 (1965), 1041–1044.
D. Gohde: Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 30 (1965), 251–258.
W. A. Kirk: A fixed point theorem for mappings which do not increase distance. Amer. Math. Monthly 72 (1965), 1004–1006.
T. Suzuki: Fixed point theorems and convergence theorems for some generalized nonexpansive mapping. J. Math. Anal. Appl. 340 (2008), 1088–1095.
K. Aoyama and F. Kohsaka: Fixed point theorem for α-nonexpansive mappings in Banach spaces. Nonlinear Anal. 74 (2011), 4387–4391.
D. Pant and R. Shukla: Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Optim. 38 (2017), 248–266.
E. Picard: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 6 (1890), 145–210.
W. R. Mann: Mean value methods in iteration. Proc. Amer. Math. Soc. 4 (1953), 506-510.
S. Ishikawa: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150.
R. P. Agarwal, D. O’Regan and D. R. Sahu: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 8 (2007), 61–79.
M. A. Noor: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217–229.
M. Abbas and T. Nazir: A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesnik 66 (2014), 223–234.
B. S. Thakur, D. Thakur and M. Postolache: A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 275 (2016), 147–155.
N. Hussain, K. Ullah and M. Arshad: Fixed point approximation of Suzuki generalized nonexpansive mappings via new faster iteration process. J. Nonlinear Convex Anal. 19 (2018), 1383–1393
W. Takahashi: Nonlinear Functional Analysis. Yokohoma Publishers, Yokohoma (2000).
R. P. Agarwal, D. O’Regan and D. R. Sahu: Fixed Point Theory for Lipschitziantype Mappings with Applications Series. Topological Fixed Point Theory and Its Applications, vol. 6. Springer, New York (2009).
J. A. Clarkson: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396–414.
Z. Opial: Weak and strong convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 591–597.
H. F. Senter and W. G. Dotson: Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 44 (1974), 375–380
J. Schu: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Austral. Math. Soc. 43 (1991), 153–159.
K. Ullah, J. Ahmad and M. de la Sen: On generalized nonexpansive maps in Banach spaces. Computation 8 (2020), 61.
J. Garcia-Falset, E. Lorens-Fuster and T. Suzuki: Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 375 (2011), 185–195.
K. Ullah and J. Ahmad: Iterative approximations of fixed points for operators satisfying (Bγ,μ) condition. Fixed Point Theory 22 (2021), 887–898.
K. Ullah, F. Ayaz and J. Ahmad: Some convergence results of M iterative process in Banach spaces. Asian-European J. Math. 2019 (2019), Art. ID 2150017
DOI: https://doi.org/10.22190/FUMI191119024U
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)