ON BINOMIAL SUMS WITH THE TERMS OF SEQUENCES {g_kn} AND {h_kn}
Abstract
In this paper, we derive sums and alternating sums of products of terms of
the sequences $\left\{ g_{kn}\right\} $ and $\left\{ h_{kn}\right\} $ with
binomial coefficients. For example,
\begin{eqnarray*}
&\sum\limits_{i=0}^{n}\binom{n}{i}\left( -1\right) ^{i} \left(c^{2k}\left(-q\right) ^{k}+c^{k}v_{k}+1\right)^{-ai}h_{k\left( ai+b\right) }h_{k\left(ai+e\right) } \\
&=\left\{
\begin{array}{clc}
-\Delta ^{\left( n+1\right) /2}g_{k\left( an+b+e\right) }g_{ka}^{n}\left(
c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is odd,} & \\
\Delta ^{n/2}h_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left(
-q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is even,} &
\end{array}%
\right.
\end{eqnarray*}%
and
\begin{eqnarray*}
&&\sum\limits_{i=0}^{n}\binom{n}{i}i^{\underline{m}}g_{k\left( n-ti\right)
}h_{kti} \\
&&=2^{n-m}n^{\underline{m}}g_{kn}-n^{\underline{m}}\left( c^{2k}\left(
-q\right) ^{k}+c^{k}v_{k}+1\right) ^{n\left( 1-t\right)
}h_{kt}^{n-m}g_{k\left( tm+tn-n\right) },
\end{eqnarray*}%
where $a, b, e$ is any integer numbers, $c$ is nonzero real number and $m$
is nonnegative integer.
Full Text:
PDFReferences
C. K. Cook and T. Komatsu: Some identities for sequences of binomial sums of generalized Fibonacci numbers. The Fibonacci Quart. 54(2) (2016), 105–111.
H. W. Gould: Combinatorial identities. Morgantown, W. Va., 1972.
E. Kılıç and P. Stanica: Factorizations and representations of second order linear recurrences with indices in arithmetic progressions. Bulletin of the Mexican Mathematical Society 15(1) (2009), 23–36.
E. Kılıç, N. Ömür and S. Koparal: On alternating weighted binomial sums with falling factorials. Bulletin of Analysis and Applications 9(1) (2017), 58–64.
E. Kılıç and N. Ömür: Some weighted binomial sums by generating function methods. Integers #A27 (2013).
E. Kılıç: Some classes of alternating weighted binomial sums. Annals of the Alexandru Ioan Cuza University Mathematics 3(2) (2016), 835–843.
E. Kılıç, N. Ömür and Y. T. Ulutaş: Binomial sums whose coefficients are products of terms of binary sequences. Utilitas Math. 84 (2011), 45–52.
E. Kılıç, Y. T. Ulutaş and N. Ömür: Formulas for weighted binomial sums with the powers of terms of binary recurrences. Miskolc Math. Notes 13(1) (2012),
–65.
T. Komatsu: Some generalized Fibonacci identities including powers and binomial coefficients. The Fibonacci Quart. 52(1) (2014), 50–60.
N. Ömür and C. D. Şener: On identities for sequences of binomial sums with the terms of sequences {u_kn} and {v_kn}. European Journal of Pure and Applied Mathematics 10(3) (2017), 506–515.
DOI: https://doi.org/10.22190/FUMI191227003K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)