A NEW GENERALIZATION OF M-METRIC SPACE WITH SOME FIXED POINT THEOREMS

Erdal Karapinar, Kushal Roy, Mantu Saha

DOI Number
https://doi.org/10.22190/FUMI200310007K
First page
079
Last page
088

Abstract


In this paper, we introduce a new sequential space as a generalization of M − metric
spaces and M b − metric spaces. In this generalized space we define two contractive mappings namely m − contraction and m − quasi-contraction and prove some fixed point theorems for such type of mappings. Several illustrative examples have been presented in strengthening the hypothesis of our theorems.


Keywords

M-metric space, Fixed point theory, stability

Full Text:

PDF

References


bibitem{re:Sm}{S. Matthews: em Partial metric topology}. Ann. N. Y. Acad. Sci., {bf 728} (1994), 183-197.

bibitem{re:Ma}{M. Asadi, E. Karapinar and P. Salimi: em New extension of $p-$metric spaces with some fixed-point results on $M-$metric spaces}. Journal of Inequalities and Applications 2014, 2014:18.

bibitem{re:Ba}{I. A. Bakhtin: em The contraction principle in quasimetric spaces}. Func. An., Ulianowsk, Gos. Ped. Ins., {bf 30} (1989), 26-37.

bibitem{re:Ju}{S. M. Jung: em Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis}. Springer Optimization and Its Applications, {bf 48} (2011).

bibitem{JS} {M. Jleli, B. Samet: em A generalized metric space and related fixed point theorems}. Fixed Point Theory Appl. 2015, {bf 14} (2015).

bibitem{EK} {M. A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapinar: em A Note on Extended $Z$-Contraction}. Mathematics 2020, 8, 195.

bibitem{EK1} {E. Karapinar, C. Chifu: em Results in $wt$-Distance over $b$-Metric Spaces}. Mathematics 2020, 8, 220.

bibitem{EK2} {C. Chifu, E. Karapinar, G. Petrusel: em Fixed point results in $varepsilon$-chainable complete $b$-metric spaces}. Fixed Point Theory, {bf 21}(2) (2020), 453-464.

bibitem{EK3} {A. Fulga, E. Karapinar, G. Petrusel: em On Hybrid Contractions in the Context of Quasi-Metric Spaces}. Mathematics 2020, 8, 675.

bibitem{re:Nm1}{N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer and T. Abdeljawed: em Fixed point theorems in $M_b-$metric spaces}. Journal of Mathematical Analysis, {bf 7}(5) (2016), Pages 1-9.

bibitem{re:Kr1}{K. Roy and M. Saha: em Fixed points of mappings over a locally convex topological vector space and Ulam-Hyers stability of fixed point problems}. Novi Sad J. Math., {bf 50}(1) (2020), 99-112.

bibitem{re:Kr2}{K. Roy and M. Saha: em On fixed points of $acute{C}$iri$acute{c}$-type contractive mappings over a $C^*-$algebra valued metric space and Hyers-Ulam stability of fixed point problems}. J. Adv. Math. Stud., {bf 12}(3) (2019), 350-363.




DOI: https://doi.org/10.22190/FUMI200310007K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)