APPROXIMATION PROPERTIES OF MODIFIED GAUSS-WEIERSTRASS INTEGRAL OPERATORS IN EXPONENTIALLY WEIGHTED Lp SPACES

Başar Yilmaz

DOI Number
https://doi.org/10.22190/FUMI200311008Y
First page
089
Last page
100

Abstract


In here, we use modied Gauss-Weierstrass operators and give
some approximation results in the exponential weighted Lp spaces. These
operators are reproduce not only 1 but also a certain exponential functions.For
this purpose, rstly we consider modied Gauss-Weierstrass integral operators
from exponentially weighted Lp;a (R) into Lp;2a (R) spaces. Then, we give rate of convergence of the operators in Lp;2a (R) : Also, we prove the convergence of operators in the exponential weighted Lp;2a (R) spaces using the Korovkin type theorem. Finally, we give pointwise convergence of the operators at a generalized Lebesgue point.


Keywords

Gauss-Weierstrass operators, korovkin type theorem, exponential weighted spaces

Full Text:

PDF

References


bibitem{ditzian} Ditzian, Z., Totik, V., Moduli of Smoothness,

Springer-Verlag, New-York, 1987.

bibitem{gadjiev} Gadjiev A. D., Aral A., Weighted $Lp$-approximation with

positive linear operators on unbounded sets, Appl. Math. Lett., 20 (10),

(2007), 1046--1051

bibitem{mohpatra*rodigez} Mohapatra, R.N., Rodriguez, R.S. :On the rate of

convergence of singular integrals for H"{o}lders continuous functions.

Math. Nachr. 149, (1990), 117-124

bibitem{butzer} Butzer, P.L., Nessel, R.J. Fourier Analysis and

Approximation, I,II; Birkhauser, Basel and Academic Press, New York, (1971)

bibitem{34} Anastassiou, G. A.,Aral, A., On Gauss-Weierstrass type integral

operators. Demonstratio Mathematica 43(4), (2010), 841--849

bibitem{Deeba} Deeba, E., Mohapatra, R.N., Rodriguez, R. S., On the degree

of approximation of some singular integrals, Rend. Mat. Appl. (7), (1988),

-355

bibitem{aydin} Aydi n, D., Aral A., Some Approximation properties of

Complex $q$-Gauss-Weierstrass type integral operators in the unit disk,

Annals of Oradea Universty- Fascicola Mathematica,(2013)Tom XX (1) 155-168

bibitem{emre} Agratini, O. Aral, A., Deniz E., On two classes of

approximation processes of integral type. Positivity. 3(21), (2017),

-1199

bibitem{2009} Rempulska, L. and Tomczak, K., On some properties of the

Picard operators, Arch. Math.(Brno), 45, (2009), 125-135

bibitem{tuncer} T. Acar, A. Aral, D. Cardenas-Morales, P. Garrancho,

Szasz-Mirakyan type operators which fix exponentials, Results in

Mathematics, 72 (3), 2017, 1393--140.

bibitem{Aral} A. Aral, D.Cardenas-Morales and P. Garrancho, Bernstein-type

operators that reproduce exponential functions,J. of Math. Ineq., V: 12,

No:3 (2018), 861--872

bibitem{tuncer2} T. Acar, A. Aral, H. Gonska, On Sz'{a}sz-Mirakyan

operators preserving $emph{e}^{2ax}$, $a>0$, Mediterr. J.

Math. 14(1), (2017). https://doi.org/10.1007/s00009-016-0804-7

bibitem{gupta} V. Gupta, A. Aral, A note on Sz'{a}sz-Mirakyan-Kantorovich

type operators preserving emph{e}$^{-x}$, Positivity, 22(2), (2018),

--423, 2018.

bibitem{y2} G. Krech, I. Krech, On Some Bivariate Gauss-Weierstrass

Operators, Constr. Math. Anal., 2 (2) (2019), 57-63.

bibitem{y3} M. Bodur, O. G. Yi lmaz, A. Aral, Approximation by Baskakov-Sz%

'{a}sz-Stancu Operators Preserving Exponential Functions, Constr. Math.

Anal., 1 (1) (2018), 1-8.

bibitem{y4} T. Acar, M. C. Montano, P. Garrancho, V. Leonessa, On

Bernstein-Chlodovsky operators preserving emph{e}$^{-2x}$emph{,} Bulletin

of the Belgian Mathematical Society--Simon Stevin, 26(5) (2019), 681-698

bibitem{y5} F. Ozsarac, T. Acar, Reconstruction of Baskakov operators

preserving some exponential functions, Mathematical Methods in the Applied

Sciences, 42 (16), 2019, 5124-5132.




DOI: https://doi.org/10.22190/FUMI200311008Y

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)