CHEBYSHEV’S TYPE INEQUALITY FOR H-CONVEX FUNCTIONS AND RELATED MEAN VALUE THEOREMS FOR ASSOCIATED FUNCTIONALS

Atiq Ur Rehman, Sidra Bibi, Ghulam Farid

DOI Number
https://doi.org/10.22190/FUMI200312037R
First page
541
Last page
562

Abstract


In this paper we investigate Chebyshev’s type inequalities for h-convex functions. These inequalities are obtained by imposing some convenient conditions on h-convex functions. Furthermore, the associated Chebyshev’s functional are estimated via mean value theorems.

Keywords

h-convex functions, Chebyshev’s type inequalities.

Full Text:

PDF

References


M. Alomari and M. Darus: On the Hadamard-type inequalities for h-convex functions on the coordinates. Int. J. Math. Anal. 3(33) (2009), 1645-1656.

M. Bakherad and S. S. Dragomir: Noncommutative Chebyshev inequality involving the Hadamard product. Azerb. J. Math. 9(1) (2019), 46-58.

M. Boczek, A. Hovana and O. Hutnk: General form of Chebyshev type inequality for generalized Sugeno integral. Internat. J. Approx. Reason. 115 (2019), 1-12.

P. Cerone and S. S. Dragomir: New upper and lower bounds for the Cebyshev functional. J. Inequal. Pure Appl. Math. 77 Art. 5(3) (2002).

P. L. Chebyshev: Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites. Proceedings of the Mathematical Society of Kharkov. 2 (1882), 93-98.

A. E. Farissi and Z. Latreuch: New type of Chebyshev Grss inequality for convex functions. Acta Universitatis Apulensis, 30 (2012), 235-245.

E. Haktanir and C. Kahraman: New product design using Chebyshev’s Inequality based interval-valued intuitionistic Z-fuzzy QFD method. Informatica (Vilnius), 33(1) (2022), 1-33.

G. H. Hardy, J. E. Littlwood and G. Polya: Inequalities. 2nd ed., Cambridge, at the University Press, 1952.

A. Hazy: Bernstein-Doetsch type results for h-convex functions. Math. Inequal. Appl. 14(3) (2011), 499-508.

D. Lanosi and A. A. Opris: On some inequalities relative to the Pompeiu-Chebyshev functional. J. Inequal. App. 2020(46) (2020).

Z. Latreuch and B. Belaidi: Like Chebyshev’s inequalities for convex functions and Applications. RGMIA Research Report Collection. 14 Art. 94 (2011), 1-10.

V. I. Levin and S. B. Steckin: Inequalities. Amer. Math. Soc. Transl. 14 (2)(1960), 1-29.

Z. Liu: A variant of Chebyshev inequality eith applications. J. Math. Inequal. 7 (4) (2013), 551-561.

V. G. Mihesan: A generalisation of the convexity. Seminar on Functional Equations, Approx. Convex., Cluj-Napoca, Romania, 1993.

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink: Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.

M. S. Moslehian and M. Bakherad: Chebyshev type inequality for Hilbert space operators. J. Math. Anal. Appl. 420 (1) (2014), 737-749

Y. Nakasuji, K. Kumahara and S. E. Takahasi: A new interpretation of Chebyshev’s inequality for sequences of real numbers and Quasi-Arithmetic means. J. Math. Inequal. 6 (2012), 95-105.

A. Olbrys: On seperation by h-convex function. Tatra Mt. Math. Publ. 62 (1) (2015), 105-111.

J. E. Pečarić, F. Proschan and Y. L. Tong: Convex functions, partial orderings and statistical applications. Academic Press INC.

S. D. Purohit and R. K. Raina: Chebyshev type inequalities for the Saigo fractional integrals and their -analogues. J. Math. Inequal. 7 (2) (2013), 239-249.

A. U. Rehman, S. Bibi and G. Farid: Chebyshev’s type inequality for m-convex functions and related mean value theorems. Submitted.

A. U. Rehman, G. Farid and V. N. Mishra: Generalized convex function and associated Petrović’s inequality. Int. J. Anal. Appl, 17 (1) (2019), 122-131.

M. Z. Sarikaya, A. Saylam and H. Yildirim, On some Hadamard type inequalities for h-convex functions. J. Math. Inequal. 2 (3), (2008), 335-341.

M. Z. Sarikaya, E. Set and M. E. Ozdemir: On some new inequalities of Hadamard type involving h-convex functions. Acta. Math. Univ. Comenianae. 2, (2010), 265-272.

G. H. Toader: Some generalisations of the convexity. Proc. Colloq. Approx. Optim, Cluj-Napoca (Romania), 1984, 329-338.

S. Varošanec: On h-convexity. J. Math. Anal. Appl. 326 (1) (2007), 303-311.

B-Y. Xi and F. Qi: Some inequalities of Hermite Hadamard type for h-convex functions. Adv. Inequal. Appl. 2(1), (2013), 1-15.

B-Y. Xi, S-H. Wang and F. Qi: Properties and inequalities for the h and (h, m)−logarithmically convex functions. Creat. Math. Inform. 22 (2), (2013).




DOI: https://doi.org/10.22190/FUMI200312037R

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)