REGULAR FRACTIONAL DIRAC TYPE SYSTEMS
Abstract
Keywords
Full Text:
PDFReferences
bibitem {al}B. P. ALLAHVERD.{I}EV and H. TUNA: q-fractional Dirac type
systems. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. Vol. 24 / 542 (2020): 117-130.
bibitem {eb1}E. BAc{S}: Fundamental spectral theory of fractional singular
Sturm-Liouville operator, textit{Journal of Function Spaces and
Applications,} Volume 2013, Article ID 915830, (2013) 7 pages.
bibitem {eb2}E. BAc{S} and F. MET.{I}N: Fractional singular Sturm-Liouville
operator for Coulomb potential, textit{Advances in Difference Equations},
:300, (2013).
bibitem {f}F.Z. BENSIDHOUM and H. DIB: On some regular fractional
Sturm-Liouville problems with generalized Dirichlet conditions, J. Integral
Equations Applications 28, no. 4, (2016) 459--480.
bibitem {cu}J. C. CUENIN: Eigenvalue bounds for Dirac and fractional
Schr"{o}dinger operators with complex potentials, Journal of
FunctionalAnalysis, 272 (2017), 2987--3018.
bibitem {mhd}M. H. DERAKHSHAN and A. ANSARI: Fractional Sturm--Liouville
problems for Weber fractional derivatives, International Journal of Computer
Mathematics, 96:2, (2019) 217-237.
bibitem {fe}M. FERREIRA and N. VIEIRA: Eigenfunctions and fundamental
solutions of the fractional Laplace and Dirac operators: the
Riemman--Liouville case, Complex Anal. Oper. Theory, 10 No. 5, (2016), 1081--1100.
bibitem {fe2}M. FERREIRA and N. VIEIRA: Eigenfunctions and Fundamental
Solutions of the Caputo Fractional Laplace and Dirac Operators, Modern Trends
in Hypercomplex Analysis, Trends in Mathematics, (2016),191--202.
bibitem {rhe}R. HILFER: Ed., textit{Applications of Fractional Calculus in
Physics}, World Scientific, Singapore, 2000.
bibitem {aak}A. A. KILBAS, H. M. SRIVASTAVA and J. J. TRUJILLO:
textit{Theory and Applications of Fractional Differential Equations}, vol.
, Elsevier, Amsterdam, The Netherlands, 2006
bibitem {kilim1}M. KLIMEK and O. P. ARGAWAL: Regular fractional
Sturm--Liouville problem with generalized derivatives of order in (0,1). In:
Proceedings of the IFAC Joint Conference: 5th SSSC, 11th WTDA, 5th WFDA, 4-6
February 2013, Grenoble, France.
bibitem {mkop}M. KLIMEK and O. P. ARGAWAL: Fractional Sturm-Liouville
problem, textit{Computers and Mathematics with Applications,} 66, (2013) 795--812.
bibitem {mklim2}M. KLIMEK, T. ODZIJEWICZ and A. B. MALINOWSKA: Variational
methods for the fractional Sturm--Liouville problem, J. Math. Anal. Appl. 416
(2014), 402--426.
bibitem {mklim3}M. KLIMEK and M. BLASIK: Regular fractional Sturm-Liouville
problem with discrete spectrum: solutions and applications. In: Proceedings of
the 2014 International Conference on Fractional Differentiaton and Its
Applications, 23-25 June 2014, Catania, Italy
bibitem {mklim}M. KLIMEK, A. B. MALINOWSKA and T. ODZIJEWICZ: Applications of
the fractional Sturm--Liouville problem to the space-time fractional diffusion
in finite domain, Fract. Calc. Appl. Anal. 19(2) (2016), 516--550.
bibitem {vla}V. LAKSHMIKANTHAM and A. S. VATSALA: textit{Basic theory of
fractional differential equations}, Nonlinear Anal. TMA 698 (2008) 2677-2683.
bibitem {vla1}V. LAKSHMIKANTHAM and A. S. VATSALA: Theory of fractional
differential inequalities and applications, textit{Commun. Appl. Anal.} 11
(2007) 395-402.
bibitem {bml}B. M. LEVITAN and I. S. SARGSJAN: textit{Introduction to
Spectral Theory: Self adjoint Ordinary Differential Operators}, American
Mathematical Society, Providence, RI, USA, 1975.
bibitem {ksm}K. S. MILLER and B. ROSS, textit{An Introduction to the
Fractional Calculus and Fractional Differential Equations}, John Wiley &
Sons, New York, NY, USA, 1993.
bibitem {ip}I. POBLUBNY: textit{Fractional Differential Equations}, vol.
, Academic Press, San Diego, CA, USA, 1999.
bibitem {c}M. RIVERO, J.J.TRUJILLO and M. P. VELASCO: A fractional approach
to the Sturm-Liouville problem,Cent.Eur.J.Phys.11(10), (2013), 1246-1254$.$
bibitem {sgs}S. G. SAMKO, A. A. KILBAS and O. I. MARICHEV: textit{Fractional
Integral and Derivatives, Theory and Applications}, Gordon and Breach,
Switzerland, 1993.
bibitem {si}H. M. SRIVASTAVA: Fractional-Order Derivatives and Integrals:
Introductory Overview and Recent Developments,textquotedblright Kyungpook
Mathematical Journal, 60 (1), (2020), 73--116.
bibitem {si2}H. M. SRIVASTAVA: Diabetes and its resulting complications:
Mathematical modeling via fractional calculus, Public Health Open Access,
(3), (2020), Article ID 2, 1-5.
bibitem {bt}B. THALLER: textit{The Dirac Equation}, Springer-Verlag, Berlin
Heidelberg, 1992.
bibitem {jw}J. WEIDMANN: textit{Spectral Theory of Ordinary Differential
Operators}. Lecture Notes in Mathematics 1258, Springer, Berlin, 1987.
bibitem {z}M. ZAYERNOURI and G.E. KARNIADAKIS: Fractional Sturm--Liouville
eigen-problems: Theory and numerical approximation, J. Comput. Phys. 252(1), (2013),495--517.
DOI: https://doi.org/10.22190/FUMI200318036A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)