REGULAR FRACTIONAL DIRAC TYPE SYSTEMS

Bilender P Allahverdiev, Huseyin Tuna

DOI Number
https://doi.org/10.22190/FUMI200318036A
First page
489
Last page
499

Abstract


In this paper, we study one dimensional fractional Dirac type systems which includes the right-sided Caputo and the left-sided Riemann-Liouvile fractional derivatives of same order α,α∈(0,1). We investigate the properties of the eigenvalues and the eigenfunctions of this system

Keywords

Fractional Dirac system, Riemann--Liouville and Caputo derivatives

Full Text:

PDF

References


bibitem {al}B. P. ALLAHVERD.{I}EV and H. TUNA: q-fractional Dirac type

systems. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. Vol. 24 / 542 (2020): 117-130.

bibitem {eb1}E. BAc{S}: Fundamental spectral theory of fractional singular

Sturm-Liouville operator, textit{Journal of Function Spaces and

Applications,} Volume 2013, Article ID 915830, (2013) 7 pages.

bibitem {eb2}E. BAc{S} and F. MET.{I}N: Fractional singular Sturm-Liouville

operator for Coulomb potential, textit{Advances in Difference Equations},

:300, (2013).

bibitem {f}F.Z. BENSIDHOUM and H. DIB: On some regular fractional

Sturm-Liouville problems with generalized Dirichlet conditions, J. Integral

Equations Applications 28, no. 4, (2016) 459--480.

bibitem {cu}J. C. CUENIN: Eigenvalue bounds for Dirac and fractional

Schr"{o}dinger operators with complex potentials, Journal of

FunctionalAnalysis, 272 (2017), 2987--3018.

bibitem {mhd}M. H. DERAKHSHAN and A. ANSARI: Fractional Sturm--Liouville

problems for Weber fractional derivatives, International Journal of Computer

Mathematics, 96:2, (2019) 217-237.

bibitem {fe}M. FERREIRA and N. VIEIRA: Eigenfunctions and fundamental

solutions of the fractional Laplace and Dirac operators: the

Riemman--Liouville case, Complex Anal. Oper. Theory, 10 No. 5, (2016), 1081--1100.

bibitem {fe2}M. FERREIRA and N. VIEIRA: Eigenfunctions and Fundamental

Solutions of the Caputo Fractional Laplace and Dirac Operators, Modern Trends

in Hypercomplex Analysis, Trends in Mathematics, (2016),191--202.

bibitem {rhe}R. HILFER: Ed., textit{Applications of Fractional Calculus in

Physics}, World Scientific, Singapore, 2000.

bibitem {aak}A. A. KILBAS, H. M. SRIVASTAVA and J. J. TRUJILLO:

textit{Theory and Applications of Fractional Differential Equations}, vol.

, Elsevier, Amsterdam, The Netherlands, 2006

bibitem {kilim1}M. KLIMEK and O. P. ARGAWAL: Regular fractional

Sturm--Liouville problem with generalized derivatives of order in (0,1). In:

Proceedings of the IFAC Joint Conference: 5th SSSC, 11th WTDA, 5th WFDA, 4-6

February 2013, Grenoble, France.

bibitem {mkop}M. KLIMEK and O. P. ARGAWAL: Fractional Sturm-Liouville

problem, textit{Computers and Mathematics with Applications,} 66, (2013) 795--812.

bibitem {mklim2}M. KLIMEK, T. ODZIJEWICZ and A. B. MALINOWSKA: Variational

methods for the fractional Sturm--Liouville problem, J. Math. Anal. Appl. 416

(2014), 402--426.

bibitem {mklim3}M. KLIMEK and M. BLASIK: Regular fractional Sturm-Liouville

problem with discrete spectrum: solutions and applications. In: Proceedings of

the 2014 International Conference on Fractional Differentiaton and Its

Applications, 23-25 June 2014, Catania, Italy

bibitem {mklim}M. KLIMEK, A. B. MALINOWSKA and T. ODZIJEWICZ: Applications of

the fractional Sturm--Liouville problem to the space-time fractional diffusion

in finite domain, Fract. Calc. Appl. Anal. 19(2) (2016), 516--550.

bibitem {vla}V. LAKSHMIKANTHAM and A. S. VATSALA: textit{Basic theory of

fractional differential equations}, Nonlinear Anal. TMA 698 (2008) 2677-2683.

bibitem {vla1}V. LAKSHMIKANTHAM and A. S. VATSALA: Theory of fractional

differential inequalities and applications, textit{Commun. Appl. Anal.} 11

(2007) 395-402.

bibitem {bml}B. M. LEVITAN and I. S. SARGSJAN: textit{Introduction to

Spectral Theory: Self adjoint Ordinary Differential Operators}, American

Mathematical Society, Providence, RI, USA, 1975.

bibitem {ksm}K. S. MILLER and B. ROSS, textit{An Introduction to the

Fractional Calculus and Fractional Differential Equations}, John Wiley &

Sons, New York, NY, USA, 1993.

bibitem {ip}I. POBLUBNY: textit{Fractional Differential Equations}, vol.

, Academic Press, San Diego, CA, USA, 1999.

bibitem {c}M. RIVERO, J.J.TRUJILLO and M. P. VELASCO: A fractional approach

to the Sturm-Liouville problem,Cent.Eur.J.Phys.11(10), (2013), 1246-1254$.$

bibitem {sgs}S. G. SAMKO, A. A. KILBAS and O. I. MARICHEV: textit{Fractional

Integral and Derivatives, Theory and Applications}, Gordon and Breach,

Switzerland, 1993.

bibitem {si}H. M. SRIVASTAVA: Fractional-Order Derivatives and Integrals:

Introductory Overview and Recent Developments,textquotedblright Kyungpook

Mathematical Journal, 60 (1), (2020), 73--116.

bibitem {si2}H. M. SRIVASTAVA: Diabetes and its resulting complications:

Mathematical modeling via fractional calculus, Public Health Open Access,

(3), (2020), Article ID 2, 1-5.

bibitem {bt}B. THALLER: textit{The Dirac Equation}, Springer-Verlag, Berlin

Heidelberg, 1992.

bibitem {jw}J. WEIDMANN: textit{Spectral Theory of Ordinary Differential

Operators}. Lecture Notes in Mathematics 1258, Springer, Berlin, 1987.

bibitem {z}M. ZAYERNOURI and G.E. KARNIADAKIS: Fractional Sturm--Liouville

eigen-problems: Theory and numerical approximation, J. Comput. Phys. 252(1), (2013),495--517.




DOI: https://doi.org/10.22190/FUMI200318036A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)