ON POINTWISE $(f,\lambda)$-STATISTICAL CONVERGENCE OF ORDER $\alpha$ AND STRONG POINTWISE $(V,f,\lambda)$-SUMMABILITY OF ORDER $\alpha$ OF SEQUENCES OF FUZZY MAPPINGS

Mikail Et, Yavuz Altin, Rifat Colak

DOI Number
https://doi.org/10.22190/FUMI200406015E
First page
219
Last page
230

Abstract


In this paper, we introduce pointwise $\left( f,\lambda \right) -$% statistical convergence of order $\alpha $ and strong pointwise $\left(V,f,\lambda \right) -$summability of order $\alpha $\ of sequences of fuzzy mappings. In addition, we examined some inclusion theorems among these concepts.


Keywords

statistical convergence, pointwise summability, fuzzy mappings.

Full Text:

PDF

References


A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno: Density by moduli and statistical convergence. Quaest. Math. 37(4) (2014) 525-530.

Y. Altin, M. Et and B. C. Tripathy: On pointwise statistical convergence of sequences of fuzzy mappings. J. Fuzzy Math. 15(2) (2007), 425-433.

Y. Altin, M. Et and M. Basarir: On some generalized difference sequences of fuzzy numbers. Kuwait J. Sci. Engrg. 34(1A) (2007), 1-14.

H. Altinok and M. Kasap: f-Statistical Convergence of order for Sequences of Fuzzy Numbers. Journal of Intelligent & Fuzzy Systems, 33 (2017) 705-712.

H. Altinok, M. Et and Y. Altin: Lacunary statistical boundedness of order for sequences of fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 35 (2018) 2383-2390.

H. Altinok, M. Et and R. Colak: Some remarks on generalized sequence space of bounded variation of sequences of fuzzy numbers. Iran. J. Fuzzy Syst.11(2014),no.5,39-46,109.

V. K. Bhardwaj and S. Dhawan: Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal. 2016, Art. ID 9365037, 11 pp.

V. K. Bhardwaj and S. Dhawan: f-statistical convergence of order and strong Cesaro summability of order with respect to a modulus. J. Inequal. Appl. 2015,2015:332,14.

M. Burgin: Theory of fuzzy limits. Fuzzy Sets and Systems, 115, (2000), 433-443.

H. Cakalli: Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2) (1995) 113-119.

M. Cinar, M. Karakas and M. Et: On pointwise and uniform statistical convergence of order for sequences of functions. Fixed Point Theory Appl. 2013, 2013:33, 11 pp.

A. Caserta, G. Di Maio and L. D. R. Kocinac: Statistical convergence in function spaces. Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.

R. Colak, H. Altinok and M. Et: Generalized difference sequences of fuzzy numbers. Chaos Solitons Fractals 40(3) (2009), 1106-1117.

R. Colak: Statistical convergence of order: Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121-129.

R. Colak: On statistical convergence. Conference on Summability and Applications, May 12-13, 2011, Istanbul Turkey.

R. Colak and C. A. Bektas: statistical convergence of order: Acta Mathematica Scientia 31(3) (2011), 953-959.

J. S Connor: The statistical and strong p-Cesaro convergence of sequences. Analysis 8 (1988), 47-63

P. Diamond and P. Kloeden: Metric spaces of fuzzy sets. Fuzzy Sets and Systems 35(2) (1990), 241-249.

M. Et, B. C Tripathy and A. J. Dutta: On pointwise statistical convergence of order of sequences of fuzzy mappings. Kuwait J. Sci. 41(3) (2014), 17-30.

M. Et, M. Cinar and M. Karakas: On statistical convergence of order of sequences of function. J. Inequal. Appl. 2013, 2013:204, 8 pp.

M. Et, A. Alotaibi and S. A. Mohiuddine: On (m; I)-statistical convergence of order: The Scientic World Journal, 2014, 535419 DOI: 10.1155/2014/535419.

M. Et: On pointwise statistical convergence of order of sequences of fuzzy mappings. Filomat 28(6) (2014) 1271-1279.

M. Et, R. Colak and Y. Altin: Strongly almost summable sequences of order: Kuwait J. Sci. 41(2), (2014), 35-47.

H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.

J. Fridy: On statistical convergence. Analysis 5 (1985), 301-313.

J. Fridy and C. Orhan: Lacunary statistical convergence. Pacic J. Math. 160 (1993), 43-51.

A. D. Gadjiev and C. Orhan: Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 32(1) (2002), 129-138.

M. Isik and Akbas, K. E.: On statistical convergence of order in probability. J. Inequal. Spec. Funct. 8(4) (2017), 57-64.

M. Isik and Et, K. E.: On lacunary statistical convergence of order in probability. AIP Conference Proceedings 1676, 020045 (2015); doi:

http://dx.doi.org/10.1063/1.4930471.

M. Isik and Akbas, K. E.: On Asymptotically Lacunary Statistical Equivalent Sequences of Order in Probability. ITM Web of Conferences 13, 01024 (2017).

DOI:10.1051/itmconf/20171301024.

V. Lakshmikantham and R. N. Mohapatra: Theory of Fuzzy Differential Equations and Inclusions. Taylor and Francis, New York, 2003.

I. J. Maddox: Inclusions between FK spaces and Kuttner's theorem. Math. Proc. Cambridge Philos. Soc. 101(3): (1987), 523-527.

M. Matloka: Fuzzy mappings sequences and series. BUSEFAL 30 (1987), 18-25.

H. Nakano: Concave modulars. J. Math. Soc. Japan, 5, (1953) 29-49.

M. Mursaleen: statistical convergence. Math. Slovaca, 50(1) (2000), 111 -115.

S. Pehlivan and B. Fisher: On some sequence spaces. Indian J. Pure Appl. Math. 25 (1994), no. 10, 1067-1071.

T. Salat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.

E. Savas: On strongly summable sequences of fuzzy numbers. Inform. Sci. 125(1-4) (2000), 181-186.

I. J. Schoenberg: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.

H. M. Srivastava and M. Et: Lacunary statistical convergence and strongly lacunary summable functions of order: Filomat 31(6) (2017), 1573-1582.

H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloquium Mathematicum 2 (1951),73-74.

O. Talo and F. Basar: Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations. Comput. Math. Appl. 58(4) (2009), 717-733.

B. C. Tripathy: On generalized difference paranormed statistically convergent sequences. Indian J. Pure Appl. Math. 35(5) (2004), 655-663.

B. C. Tripathy and G. C. Ray: Fuzzy continuity in mixed fuzzy ideal topological spaces. J. Appl. Anal. 2482 (2018), 233-239.

B. C. Tripathy and A. J. Dutta: On fuzzy real-valued double sequence space 2-p F Math. Comput. Modelling 46(9-10) (2007), 1294-1299.

B. C. Tripathy and M. Sen: On lacunary strongly almost convergent double sequences of fuzzy numbers. An. Univ. Craiova Ser. Mat. Inform. 42(2) (2015), 254-259.

L. A. Zadeh: Fuzzy sets. Information and Control 8 (1965), 338-353.




DOI: https://doi.org/10.22190/FUMI200406015E

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)