ON AN INVARIANT SUBMANIFOLD OF HYPERBOLIC SASAKIAN MANIFOLDS

Shravan Kumar Pandey, Ram Nawal Singh

DOI Number
10.22190/FUMI1703353P
First page
353
Last page
367

Abstract


The object of the present paper is to study an invariant submanifold of hyperbolic Sasakian maifolds. In this paper, we consider semiparallel and 2-semiparallel invariant submanifolds of hyperbolic Sasakian manifold and it is shown that these submanifolds are totally geodesic. It is also proved that on an invariant submanifold of hyperbolic Sasakian manifolds the conditions $I(X, Y).\alpha = 0$, $I(X, Y).\tilde{\nabla}\alpha = 0$, $C(X, Y).\alpha = 0$, $C(X, Y).\tilde{nabla}\alpha = 0$ holds if and only if it is totally geodesic.

Keywords

hyperbolic Sasakian manifold, invariant submanifold, semiparallel submanifold, 2-semiparallel submanifold, totally geodesic submanifold

Keywords


hyperbolic Sasakian manifold, invariant submanifold, semiparallel submanifold, 2-semiparallel submanifold, totally geodesic submanifold

Full Text:

PDF

References


K. Arslan, U. Lumiste, C. Murathan and C. Ozgür: 2-semiparallel surfaces in space forms I. Two perticular cases, Proc. Estonian Acad. Sci. Phys. Math., 49(3)

(2000), 139-148.

A. Bejancu and N. Papaghuic: Semi-invariant submanifolds of a Sasakian manifold, An Stiint. Univ. ”AL I CUZA” Iasi, 27 (1981), 163-170.

D. E. Blair and G. D. Ludden: Hypersurfaces in almost contact manifolds, Tohoku Math. J., 22 (1969), 354-362.

D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture notes in Math., 509, Springer Verlag, Verlin, 1976.

B. Y. Chen: Goemetry of submanifolds, Marcel Dekker, New York, 1973.

U. C. De and A. A. Shaikh: Non-existance of proper semi-invariant submanifold of a Lorentzian para-Sasakian manifold, Bull. Malayasian Math.Soc.(Second series), 22(1999), 179-183.

U. C. De and A. K. Sengupta: CR-Submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malayasian Math.Soc., 23 (2000), 99-106.

U. C. De, A. Al- Aqueal and A. A. Shaikh: Submanifolds of Lorentzian para-Sasakian manifold, Bull. Malayasian Math.Soc., 28 (2005), 223-227.

U. C. De and A. Sarkar: On pseudo-slant submanifolds of trans-Sasakian manifolds, Proc. Estonian Acad. Sci., 60 (2011), 1-11.

J. Deprez: Semi-parallel surfaces in the Euclidean space, Journal of Geometry, 25 (1985),192-200.

S. I. Goldberg and K. Yano: Non-invariant hypersurfaces of almost contact manifolds, J. Math. Soc. of Japan, 22(1) (1970), 25-34.

S. I. Goldberg: Invariant submanifolds of co-dimension 2 of almost contact manifolds, Scuola Nomale Superiore, 25Fasc (3)(1971), 377-388.

Z. Guojing and W. Jiangu: Invariant submanifolds and modes of non-linear autonomous system, Applied Mathematics and Mechanics, 19 (1998), 687-693.

K. Matsumoto, I. Mihai and R. Rosaca: ξ-null geodesic vector fields on a LP-Sasakian manifold, J.Korean Math.Soc.,32 (1995), 17-31.

R. S. Mishra: Submanifolds of a locally product Riemannian manifold, Canad. Math. Bull., 11 (1968), 423-435.

R. S. Mishra: Almost complex and almost contact submanifols, Tensor N.S., 25 (1972), 419-433.

R. S. Mishra and M. P. Rathore: On framed mertic submanifolds, The Yokohama Math. J., 24(1& 2) (1976), 13-20.

C. Ozgür and C. Murathan: On invariant submanifolds of Lorentzian para-Sasakian manifolds, The Arabian Journal for Science and Engineering, 34(2A) (2008), 177-185.

N. Papaghuic: Semi-invariant submanifolds in a Kenmotsu manifold, Rend. Mat., 3 (1983), 607-622.

A. Sarkar: On submanifolds of Sasakian manifolds, Lobachevskii J.Math., 32 (2011), 87-93.

A. Sarkar and M. Sen: On invariant submanifolds of trans-Sasakian manifolds, Proc. Estonian Acad. Sci., 61(1) (2012), 29-37.

R. N. Singh, S. K. Pandey and G. Pandey: On submanifolds of hyperbolic Sasakian manifolds, (Communicated).

B. B. Sinha and R. Sharma: Hypersurfaces in an almost paracontact manifold, Indian J.Pure Appl.Math., 9 (1978), 1083-1090.

S. Sular and C. Ozgur: On submanifolds of Kenmotsu manifolds, Chaos, Solitons and Fractals, 42 (2009), 1990-1995.

M. D. Upadhyay and K. K. Dubey: Almost hyperbolic contact (f,ξ,η,g) structure, Acta Mathematica Academaiae Scientiarum Hungrical Tomus, 28 H-1053, 13-15.

K. Yano and M. Kon: Structures on manifolds, Series in Pure Mathematics (World Scientific, Singapore), 1984.




DOI: https://doi.org/10.22190/FUMI1703353P

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)