SPACES OF FIBONACCI DIFFERENCE IDEAL CONVERGENT SEQUENCES IN RANDOM 2–NORMED SPACE

Vakeel A. Khan, Henna Altaf, Ayhan Esi, Kamal MAS Alshlool

DOI Number
https://doi.org/10.22190/FUMI200424057K
First page
773
Last page
781

Abstract


In this article, by using Fibonacci difference matrix  and the notion of ideal convergence of sequences in random 2–normed space, we introduce some new spaces of Fibonacci difference ideal convergent sequences with respect to random -norm and study some inclusion relations, topological and algebraic properties of these spaces. 

Keywords

ideals, statistical convergence, probabilistic metric spaces

Full Text:

PDF

References


bibitem{altay2007fine}

{sc B. Altay and F. Ba{c{s}}ar}: textit{The fine spectrum and the matrix domain of the difference operator

$Delta$ on the sequence space $l_{p},(0< p< 1)$}. Commun. Math. Anal. {bf 2}(2) (2007),1-11.

bibitem{bacsar2003space}

{sc F.Ba{c{s}}ar and B. Altay}: textit{On the space of sequences of p-bounded variation and related matrix

mappings},(English, Ukrainian summary) Ukrain. Math J. {bf 55}(1) (2003), 136-147.

bibitem{kara2013some}

{ sc E. E. Kara}: textit{ Some topological and geometrical properties of new Banach sequence spaces}. J Inequal Appl. {bf 1} (2013),38.

bibitem{kara2016some}

{sc E. E. Kara, M. .{I}lkhan}: textit{Some properties of generalized Fibonacci sequence spaces}. Linear Multilinear Algebra {bf 64}(11) (2016), 2208-2223.

bibitem{kara2015some}

{sc E. E. Kara, M..{I}lkhan}: textit{On some Banach sequence spaces derived by a new band matrix}. Br. J. Math. Comput. Sci. {bf 9} (2) (2015), 141-159.

bibitem{fast1951convergence}

{sc Fast, H}: textit{Sur la convergence statistique}. Colloq. Math. {bf 2} (1951), 241--244.

bibitem{fridy1985statistical}

{sc Fridy, J.~A}: textit{On statistical convergence}. Analysis. {bf 5}(4) (1985), 301--314.

bibitem{gahler19632}

{sc G{"a}hler, S}: textit{$2$-metrische r{"a}ume und ihre topologische struktur}. Math. Nachr. {bf 26}(1-4) (1963), 115--148.

bibitem{golet2005probabilistic}

{sc Golet, I}: textit{On probabilistic $2$-normed spaces}. Novi Sad J. Math. {bf 35}(1) (2005), 95--102.

bibitem{hazarika2013lacunary}

{sc Hazarika, B}: textit{Lacunary difference ideal convergent sequence spaces of fuzzy

numbers}. J Intell Fuzzy Syst. {bf 25}(1) (2013), 157--166.

bibitem{hazarika2011some}

{sc Hazarika, B. and Savas, E}: textit{Some $I$-convergent lambda-summable difference sequence spaces of fuzzy

real numbers defined by a sequence of orlicz functions}. Math Comput Model. {bf 54}(11-12) (2011), 2986--2998.

bibitem{khan2018ideal}

{sc Khan, V.~A., Rababah, R.~K., Alshlool, K.~M., Abdullah, S.~A., and Ahmad, A}: textit{On ideal convergence fibonacci difference sequence spaces}. Math. Nachr. {bf 2018}(1) (2018), 199.

bibitem{kizmaz1981certain}

{sc Kizmaz, H.}: textit{Certain sequence spaces}. Can. Math. Bull. {bf 24}(2) (1981), 169--176.

bibitem{kostyrko2000convergence}

{sc Kostyrko, P., Wilczy{'n}ski, W., {v{S}}al{'a}t, T., et~al}: textit{$I$-convergence}. Real Anal. Exch. {bf 26}(2) (2000), 669--686.

bibitem{mursaleen2011convergence}

{sc Mursaleen, M. and Alotaibi, A}: textit{On $I$-convergence in random $2$-normed spaces}. Math. Nachr. {bf 61}(6) (2011), 933.

bibitem{zengin2019difference}

{ sc P. Zengin and M. .{I}lkhan}: textit{On the difference sequence space $l_{p}(hat{T}^{q}$}.Math. Sci. Appl. E-Notes. {bf 7} (2) (2019), 161-173.

bibitem{vsalat2004some}

{sc {v{S}}al{'a}t, T., Tripathy, B.~C., and Ziman, M}: textit{On some properties of $I$-convergence}. Tatra Mt. Math. Publ. {bf 28}(2) (2004), 274--286.

bibitem{vsalat2005convergence}

{sc {v{S}}al{'a}t, T., Tripathy, B.~C., and Ziman, M}: textit{On $I$-convergence field}. Ital. J. Pure Appl. Math. {bf 17}(5) (2005), 1--8.

bibitem{steinhaus1951convergence}

{sc Steinhaus, H}: textit{Sur la convergence ordinaire et la convergence asymptotique}. Colloq. Math. {bf 2} (1951), 73--74.




DOI: https://doi.org/10.22190/FUMI200424057K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)