ROBUSTNESS ANALYSIS OF THE DATA-SELECTIVE VOLTERRA NLMS ALGORITHM

Javad Sharafi, Abbas Maarefparvar

DOI Number
https://doi.org/10.22190/FUMI200427031S
First page
453
Last page
466

Abstract


Recently, the data-selective adaptive Volterra filters have been proposed;
however, up to now, there are not any theoretical analyses on its behavior rather than numerical simulations. Therefore, in this paper, we analyze the robustness (in the sense of l_2-stability) of the data-selective Volterra normalized least-mean-square (DSVNLMS) algorithm. First, we study the local robustness of this algorithm at any iteration, then we propose a global bound for the error/discrepancy in the coefficient vector. Also, we demonstrate that the DS-VNLMS algorithm improves the parameter estimation for the majority of the iterations that an update is implemented. Moreover, we also prove that if the noise bound is known, then we can set the DS-VNLMS so that it never degrades the estimate. The simulation results corroborate the validity of the executed analysis and demonstrate that the DS-VNLMS algorithm is robust against noise, no matter how its parameters are adopted.


Keywords

Volterra filters, DS-VNLMS algorithm, simulation

Full Text:

PDF

References


L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J. ArenasGarcia and W. Kellermann: Adaptive combination of Volterra kernels and its

application to nonlinear acoustic echo cancellation. IEEE Transactions on Audio,

Speech, and Language Processing. 2010 Mar. 11; 19(1): 97-110.

W. He and S. S. Ge: Cooperative control of a nonuniform gantry crane with

constrained tension. Automatica. 2016 Apr. 1;66: 146-154.

R. A. do Prado, F. da Rocha Henriques and D. B. Haddad: Sparsityaware distributed adaptive filtering algorithms for nonlinear system identification.

In: 2018 IEEE International Joint Conference on Neural Networks (IJCNN) 2018

July 8 (pp. 1-8).

T. W. Berger, D. Song, R. H. Chan and V. Z. Marmarelis: The neurobiological basis of cognition: identification by multi-input, multioutput nonlinear

dynamic modeling. Proceedings of the IEEE. 2010 Mar 4; 98 (3): 356-374.

N. V. George and G. Panda: Advances in active noise control: A survey, with

emphasis on recent nonlinear techniques. Signal processing. 2013 Feb. 1; 93 (2):

-377.

R. Claser, V. H. Nascimento and Y. V. Zakharov: A low-complexity RLSDCD algorithm for Volterra system identification. In: 2016 24th European Signal

Processing Conference (EUSIPCO) 2016 Aug. (pp. 6{10). IEEE.

L. Tan and J. Jiang: Adaptive second-order volterra filtered-X RLS algorithms

with sequential and partial updates for nonlinear active noise control. In: 2009

th IEEE Conference on Industrial Electronics and Applications 2009 May 25

(pp. 1625-1630). IEEE.

F. B. da Silva and W. A. Martins: Data-selective volterra adaptive filters.

Circuits, Systems, and Signal Processing. 2018 Oct. 1; 37 (10): 4651-4664.

H. Yazdanpanah, M. V. S. Lima and P. S. R. Diniz: On the robustness of

set-membership adaptive filtering algorithms. EURASIP Journal on Advances in

Signal Processing. 2017 Dec; 2017 (1): 1-12.

S. Zhang and J. Zhang: Set-membership NLMS algorithm with robust error

bound. IEEE Transactions on Circuits and Systems II: Express Briefs. 2014 May

; 61 (7): 536-540.

H. Yazdanpanah, M. V. S. Lima and P. S. R. Dini: On the robustness of the

set-membership NLMS algorithm. In: 2016 IEEE Sensor Array and Multichannel

Signal Processing Workshop (SAM) 2016 July 10 (pp. 1-5). IEEE.

P. S. R. Diniz and H. Yazdanpanah: Improved set-membership partial-update

affine projection algorithm. In: 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) 2016 Mar. (pp. 4174-4178). IEEE.

E. Mumolo and A. Carini: On the stability of discrete time recursive Volterra

filters. IEEE Signal Processing Letters. 1999 Sept.; 6 (9): 230-232.

M. Sayadi, F. Fnaiech and M. Najim: An LMS adaptive second-order Volterra

filter with a zeroth-order term: steady-state performance analysis in a timevarying environment. IEEE transactions on signal processing. 1999 Mar.; 47 (3):

-876.

I. J. Chao: Analysis on error surface and fast algorithms of multichannel

quadratic Volterra adaptive filters. In: The 2004 47th Midwest Symposium on

Circuits and Systems, 2004. MWSCAS’04. 2004 July 25 (Vol. 3, pp. iii-403).

IEEE.

K. Motonaka, T. Katsube, Y. Kajikawa and S. Miyoshi: StatisticalMechanical Analysis of the Second-Order Adaptive Volterra Filter. In: 2018 AsiaPacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 2018 Nov. 12 (pp. 1821-1824). IEEE.

V. J. Mathews and G. Sicuranza: Polynomial signal processing. Wiley, New

York, USA; 2000.

H. Yazdanpanah, A. Carini and M. V. S. Lima: L0-norm adaptive Volterra

filters. In: 2019 27th European Signal Processing Conference (EUSIPCO) 2019

Sept. (pp. 1-5). IEEE.

P. S. R. Diniz: Adaptive filtering: algorithms and practical implementation.

Springer USA; 2013.

A. H. Sayed: Adaptive Filters. Wiley-IEEE, New York, USA; 2008.

H. Yazdanpanah and P. S. R. Diniz: New trinion and quaternion setmembership affine projection algorithms. IEEE Transactions on Circuits and Systems II: Express Briefs. 2016 Apr.; 64 (2): 216-220.

H. Yazdanpanah, P. S. R. Diniz and M. V. S. Lima: Improved simple setmembership affine projection algorithm for sparse system modeling: analysis and

implementation. IET Signal Processing. 2019 14 (2): 81-88.

P. S. R. Diniz: On data-selective adaptive filtering. IEEE Transactions on Signal

Processing. 2018 Aug. 66 (16): 4239-4252.

J. G. Proakis: Digital communications. McGraw-hill, USA; 1995.

J. F. Galdino, J. A. Apolinrio and M. L. de Campos: A set-membership

NLMS algorithm with time-varying error bound. In: 2006 IEEE International

Symposium on Circuits and Systems 2006 May 21 (pp. 277-280).




DOI: https://doi.org/10.22190/FUMI200427031S

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)