NONLINEAR NEUTRAL CAPUTO-FRACTIONAL DIFFERENCE EQUATIONS WITH APPLICATIONS TO LOTKA-VOLTERRA NEUTRAL MODEL
Abstract
Keywords
Full Text:
PDFReferences
T. Abdeljawad, F. M. Atici: On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012 (2012), 1–13.
T. Abdeljawad, D. Baleanu: Fractional differences and integration by Parts. J. Comput. Anal. Appl. 13(5) (2011), 574–582.
T. Abdeljawad: On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013 (2013), 1–12.
B. Ahmad, D. Garout, S. K. Ntouyas, A. Alsaedi: Caputo fractional differential inclusions of arbitrary order with nonlocal integro-multipoint boundary conditions. Miskolc Mathematical Notes 20(2) (2019), 683–699.
A. Ardjouni, A. Djoudi: Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equations. Malaya Journal of Matematik 7(2) (2019), 314–317.
J. Alzabut, T. Abdeljawad, D. Baleanu: Nonlinear delay fractional difference equations with applications on discrete fractional Lotka-Volterra competition model. J. Computational Analysis and Applications 25(5) (2018), 889–898.
F. M. Atici, P. W. Eloe: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2(2) (2007), 165–176.
F. M. Atici, P. W. Eloe: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009(3) (2009), 1–12.
F. M. Atici, S. S ¸engül: Modeling with factorial difference equations. J. Math. Anal. Appl. 369(1) (2010), 1–9.
T. A. Burton: A fixed point theorem of Krasnoselskii fixed point theorem. Appl. Math. Lett. 11 (1998), 85–88.
F. Capone, R. D. Luca, S. Rionero: On the stability of non-autonomous perturbed Lotka-Volterra models. Appl. Math. Comp. 219(12) (2013), 6868–6881.
A. Cuspilici, P. Monforte, M. A. Ragusa: Study of Saharan dust influence on PM10 measures in Sicily from 2013 to 2015. Ecological Indicators 76 (2017), 297–303.
F. D. Chen, X. X. Chen: The n-competing Volterra-Lotka almost periodic systems with grazing rates. J. Biomath. 18(4) (2003), 411–416.
J. Dong, Y. Feng, J. Jiang: A note on implicit fractional differential equations. Mathematica Aeterna 7(3) (2017), 261–267.
A. Duro, V. Piccione, M. A. Ragusa, V. Veneziano: New Enviromentally Sensitive Patch Index - ESPI - for MEDALUS protocol. AIP Conference Proceedings 1637 (2014), 305–312.
L. Erbe, C. S. Goodrich, B. Jia, A. Peterson: Survey of the qualitative properties of fractional difference operators: monotonicity, convexity and asymptotic behavior of solutions. Adv. Differ. Equ. 2016(43) (2016), 1–31.
C. Goodrich, A. Peterson: Discrete Fractional Calculus. Springer 2015.
K. Gopalsamy, P. X. Weng: Feedback regulation of logistic growth. Int. J. Math. Sci. 16(1) (1993), 177–192.
E. Guariglia: Fractional Derivative of the Riemann Zeta Function. In: Fractional Dynamics, C. Cattani, H.M. Srivastava, X.-Y. Yang (Eds.), De Gruyter, 2015, pp. 357–368.
E. Guariglia: Riemann zeta fractional derivative - functional equation and link with primes. Advances in Difference Equations, 2019 (2019), 261.
E. Guariglia, S. Silvestrov: A functional equation for the Riemann zeta fractional derivative. AIP Conference Proceedings 1798 (2017), 020063.
S. Hasan, M. Al-Smadi, A. Freihet, S. Momani: Two computational approaches for solving a fractional obstacle system in Hilbert space. Adv. Differ. Equ. 2019 (2019), 55.
C. Li, X. Dao, P. Guo: Fractional derivatives in complex planes. Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 1857–1869.
J. X. Li, J. R. Yan: Persistence for Lotka-Volterra patch-system with time delay. Nonlinear Anal. 9(2) (2008), 490–499.
M. D. Ortigueira, F. Coito: From differences to derivatives. Fract. Calc. Appl. Anal. 7(4) (2004), 459–471.
DOI: https://doi.org/10.22190/FUMI2005475M
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)