ON THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS ADMITTING SCHOUTEN-VAN KAMPEN CONNECTION

Ashis Mondal

DOI Number
https://doi.org/10.22190/FUMI200618022M
First page
293
Last page
308

Abstract


In the present paper,  we study three-dimensional trans-Sasakian manifolds admitting the Schouten-van Kampen connection.  Also, we have proved some results on $\phi$-projectively flat, $\xi-$projectively flat and $\xi-$concircularly flat three-dimensional trans-Sasakian manifold  with respect to the Schouten-van Kampen connection. Locally $\phi-$symmetry trans-Sasakian manifolds of dimension three have been studied  with respect to Schouten-van Kampen connection. Finally, we construct an example of a three-dimensional trans-Sasakian manifold admitting Schouten-van Kampen connection which verifies Theorem 4.1.

Keywords

General geometric structures on manifolds, Schouten-van Kampen connection, Special Riemannian manifolds

Full Text:

PDF

References


bibitem{1} {sc D. E. Blair}, textit{Riemannian geometry of contact and symplectic manifolds}, Progress in Math., Vol. textbf{203}, Birkh$ddot{mathrm{a}}$user,

Boston, 2002.

bibitem{q1} {sc D. E. Blair}, textit{Contact Manifolds in Riemannian Geometry}, Lecture notes in math. No 509. Springer-Verlag, Berlin-New York, 1976.

bibitem{2} {sc D. E. Blair {rm and} J. A. Oubina}, textit{Conformal and related changes of metric on the product of two almost contact metric manifolds}, Publications Mathematiques, textbf{34}(1990), 199-207.

bibitem{3} {sc C. Baikoussis {rm and} D. E. Blair}, textit{On Legendre curves in contact 3-manifolds}, Geometry Dedicata, textbf{49}(1994), 135-142.

bibitem{ii1} {sc S. Deshmukh {rm and} M. M. Tripathi}, textit{Anote on trans-Sasakian manifolds}, Math. Slov., textbf{53}(6)(2013), 1361-1370.

bibitem{ii2} {sc U. C. De {rm and} K. De}, textit{On a class of three-dimensional Trans-Sasakian manifolds}, Commun Korean Math. Soci., textbf{27}(4)(2012), 795-808.

bibitem{ii3} {sc U. C. De {rm and} M.M. Tripathi}, textit{Ricci tensor in 3-dimensional trans-Sasakian manifolds}, Kyungpook Math. J., textbf{43}(2)(2003), 247-255.

bibitem{anu1} {sc U. C. De {rm and} A. Sarkar}, textit{On Three-dimensional Trans-Sasakian Manifolds}, Extracta Mathematicae, textbf{23}( 2008), 256-277.

bibitem{anu2} {sc U. C. De {rm and} M. M. Tripathi}, textit{Ricci tensor in 3-dimensional trans-Sasakian manifolds}, Kyungpook Math. J., textbf{43}(2003), 247-255.

bibitem{7} {sc A. Gray {rm and} L. M. Hervella}, textit{The sixteen classes of almost Harmite manifolds and their linear invariants}, Ann. Mat, Pura Appl.,

textbf{123}(1980), 35-58.

bibitem{g1} {sc G. Ghosh}, textit{On Schouten-van Kampen connection in Sasakian manifolds}, Boletim da Sociedade Paranaense de Mathematica, textbf{36}(2018), 171-182.

bibitem{qq2} {sc K. Kenmotsu}, textit{A class of almost contact Riemannian manifolds}, Tohoku math. J., textbf{24}(1972), 93-103.

bibitem{d1} {sc D. L. Kiran Kumar, H. G. Nagaraja {rm and} S. H. Naveenkumar}, textit{Some curvature properties of Kenmotsu manifolds with Schouten-van Kampen connection}, Bull. of the Transilvania Univ. of Brasov., Series III: Math., Informatics, Phys., textbf{2}(2019), 351-364.

bibitem{fin2} {sc W. K$ddot{u}$hnel}, textit{Conformal transformatons between Einstein spaces}, Conformal geometry (Bonn, 1985/1986), 105-146, Aspects Math. E12, Friedr. Vieweg, Braunschweing, 1988.

bibitem{i2}{sc J. C. Marrero}, textit{The local structures of trans-Sasakian manifolds}, Ann. Math. Pura. Appl, textbf{4}(162)(1992), 77-86.

bibitem{n1} {sc H. G. Nagaraja {rm and} D. L. Kiran Kumar}, textit{Kenmotsu manifolds admitting Schouten-van Kampen connection}, Facta Univ. Series: Math. and Informations, textbf{34} (2019), 23-34.

bibitem{i1} {sc J. A. Oubi~{n}a}, textit{New classes of almost contact metric structures}, Publicationes Mathematicae Debrecen, textbf{32}(1985), 187-193.

bibitem{f}{sc Z. Olszak}, textit{The Schouten-Van Kampen affine connection adapted to an almost(para) contact metric structure}, Publications Delinstitut Mathematique, textbf{94}(2013),31-42.

bibitem{new7} {sc A. F. Solov'ev}, textit{On the curvature of the connection induced on a hyperdistribution in a Riemannian space}, Geom. Sb., textbf{19}(1978), 12-23(in Russian).

bibitem{ti1} {sc A. F. Solov'ev}, textit{The bending of hyperdistributions}, Geom. Sb., textbf{20}(1979), 101-112.

bibitem{ti2} {sc A. F. Solov'ev}, textit{Second fundamental form of a distribution}, Mathematical notes of the Academy of Sciences of the USSR, textbf{31}(1982), 71-75.

bibitem{ti3} {sc A. F. Solov'ev}, textit{Curvature of a distribution}, Mathematical notes of the Academy of Sciences of the USSR, textbf{35}(1984), 61-68.

bibitem{anu3} {sc M. M. Tripathi {rm and} M. K. Dwivedi}, textit{The structure of some classes of K-contact manifolds}, Proc. Indian Acad. Sci. Math. Sci., textbf{118}(2008), 371-379.

bibitem{anu4} {sc M. M. Tripathi}, textit{Ricci solitons in contact metric manifolds}, arXiv:0801.4222v1, [math.DG], 28(2008).

bibitem{q7} {sc M. M. Tripathi {rm and} M. K. Dwivedi}, textit{The structure of some classes of K-contact manifolds}, Proc. India Acad. Sci. Math. Sci., textbf{118}(2008), 371-379.

bibitem{q6} {sc T. Takahashi}, textit{Sasakian $phi-$symmetric spaces}, Tohoku Math. J., textbf{29}(1977), 91-113.

bibitem{15} {sc N. Tanaka}, textit{On non-degenerate real hypersurfaces, graded Lie algebra and Cartan connections}, Japan J. Math., textbf{2}(1976), 131-190.

bibitem{new8} {sc A. Yildiz}, textit{$f$-Kenmotsu manifolds with the Schouten-Van Kampen connection}, Pub. De L'institut Math., textbf{102}(116)(2017), 93-105.

bibitem{fin1} {sc K. Yano}, textit{Concircular geometry I. concircular transformations}, Proc. Inst. Acad. Tokyo, textbf{16} (1940), 195-200.

bibitem{fin4} {sc K. Yano {rm and} S. Bochner}, textit{Curvature and Betti numbers}, Annals of Math. Studies 32, Princeton university press, 1953.




DOI: https://doi.org/10.22190/FUMI200618022M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)