SOME RESULTS ON LIE IDEALS WITH SYMMETRIC REVERSE BI-DERIVATIONS IN SEMIPRIME RINGS I

Emine Koç Sögütcü, Öznur Gölbaşı

DOI Number
https://doi.org/10.22190/FUMI200708023K
First page
309
Last page
319

Abstract


Let R be a semiprime ring, U a square-closed Lie ideal of R and D : R R ! R a symmetric reverse bi-derivation and d be the trace of D: In the present paper, we shall prove that R commutative ring if any one of the following holds: i) d(U) = (0); ii)d(U) Z; iii)[d (x) ; y] 2 Z; iv)d(x)oy 2 Z; v)d ([x; y])[d(x); y] 2 Z; vi)d (x y)(d(x)y) 2 Z; vii)d ([x; y])d(x)y 2 Z viii)d (x y) [d(x); y] 2 Z; ix)d(x) y [d(y); x] 2 Z; x)d([x; y]) (d(x) y) [d(y); x] 2 Z xi)[d(x); y] [g(y); x] 2 Z; for all x; y 2 U; where G : R R ! R is symmetric reverse bi-derivations such that g is the trace of

Keywords

Semiprime rings, Lie ideals, derivations, bi-derivations, reverse derivations, reverse bi-derivations.

Full Text:

PDF

References


bibitem {golbasi}

{sc Z. Bedir {rm and} O. Golbasi}: {textit Some commutativity on Lie ideals on semiprime rings}. Adi yaman University Journal of Science, {bf 10(2)} (2020), 548-556.

bibitem {bergen}

{sc J. Bergen, I. N. Herstein {rm and} J. W. Kerr:} {textit Lie ideals and derivations of prime rings}. J. Algebra, {bf 71(1)} (1981), 259-267.

bibitem {daif}

{sc M. N. Daif {rm and} H. E. Bell:} {textit Remarks on derivations on semiprime rings}. Internat J. Math. Math. Sci. {bf 15(1)} (1992) 205-206.

bibitem {herstein}

{sc I. N. Herstein}: {textit A note on derivations}. Canad. Math. Bull. {bf 21(3)} (1978), 369-370.

bibitem {maksa}

{sc Gy. Maksa:} {textit A remark on symmetric biadditive functions having non-negative diagonalization}. Glasnik. Mat. {bf 15(35)} (1980), 279--282.

bibitem {maksa1}

{sc Gy. Maksa}: {textit On the trace of symmetric biderivations}. C. R. Math. Rep. Acad. Sci. Canada, {bf 9} (1987), 303--307.

bibitem {posner}

{sc E. C. Posner}: {textit Derivations in prime rings}. Proc. Amer. Soc. {bf 8} (1957), 1093-1100.

bibitem {samman}

{sc M. S. Samman and A.B. Thaheem:} {textit Derivations on semiprime rings}. Int. J. Pure Appl. Math. {bf 5(4)} (2003), 465--472.

bibitem {vukman}

{sc J. Vukman: } {textit Symmetric biderivations on prime and semiprime rings}. Aequationes Math. {bf 38} (1989), 245--254.

bibitem {vukman1}

{sc J. Vukman:} {textit Two results concerning symmetric biderivations on prime rings}. Aequationes Math. {bf 40} (1990), 181--189.




DOI: https://doi.org/10.22190/FUMI200708023K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)