SOME RESULTS ON LIE IDEALS WITH SYMMETRIC REVERSE BI-DERIVATIONS IN SEMIPRIME RINGS I
Abstract
Keywords
Full Text:
PDFReferences
bibitem {golbasi}
{sc Z. Bedir {rm and} O. Golbasi}: {textit Some commutativity on Lie ideals on semiprime rings}. Adi yaman University Journal of Science, {bf 10(2)} (2020), 548-556.
bibitem {bergen}
{sc J. Bergen, I. N. Herstein {rm and} J. W. Kerr:} {textit Lie ideals and derivations of prime rings}. J. Algebra, {bf 71(1)} (1981), 259-267.
bibitem {daif}
{sc M. N. Daif {rm and} H. E. Bell:} {textit Remarks on derivations on semiprime rings}. Internat J. Math. Math. Sci. {bf 15(1)} (1992) 205-206.
bibitem {herstein}
{sc I. N. Herstein}: {textit A note on derivations}. Canad. Math. Bull. {bf 21(3)} (1978), 369-370.
bibitem {maksa}
{sc Gy. Maksa:} {textit A remark on symmetric biadditive functions having non-negative diagonalization}. Glasnik. Mat. {bf 15(35)} (1980), 279--282.
bibitem {maksa1}
{sc Gy. Maksa}: {textit On the trace of symmetric biderivations}. C. R. Math. Rep. Acad. Sci. Canada, {bf 9} (1987), 303--307.
bibitem {posner}
{sc E. C. Posner}: {textit Derivations in prime rings}. Proc. Amer. Soc. {bf 8} (1957), 1093-1100.
bibitem {samman}
{sc M. S. Samman and A.B. Thaheem:} {textit Derivations on semiprime rings}. Int. J. Pure Appl. Math. {bf 5(4)} (2003), 465--472.
bibitem {vukman}
{sc J. Vukman: } {textit Symmetric biderivations on prime and semiprime rings}. Aequationes Math. {bf 38} (1989), 245--254.
bibitem {vukman1}
{sc J. Vukman:} {textit Two results concerning symmetric biderivations on prime rings}. Aequationes Math. {bf 40} (1990), 181--189.
DOI: https://doi.org/10.22190/FUMI200708023K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)