GRUNDY DOMINATION SEQUENCES IN GENERALIZED CORONA PRODUCTS OF GRAPHS

Seyedeh Maryam Moosavi Majd, Hamid Reza Maimani

DOI Number
https://doi.org/10.22190/FUMI2004231M
First page
1231
Last page
1237

Abstract


For a graph $G=(V,E)$, a sequence $S=(v_1, v_2, \cdots, v_k)$ of distinct vertices of $G$ is called \emph{dominating sequence} if $N_G[v_i]\setminus \bigcup_{j=1}^{i-1}N[v_j]\neq\varnothing$ and is called \emph{total dominating sequence} if $N_G(v_i)\setminus \bigcup_{j=1}^{i-1}N(v_j)\neq\varnothing$ for each $2\leq i\leq k$. The maximum length of (total) dominating sequence is denoted by ($\gamma_{gr}^t)\gamma_{gr}(G)$. In this paper we compute (total) dominating sequence numbers for generalized corona products of graphs.

Keywords

distinct vertices; dominating sequence; total dominating sequence; generalized corona products.

Full Text:

PDF

References


B. Brešar, Cs. Bujtas, T. Gologranc, S. Klavzar, G. Kosmrlj, B. Patkos, Z. Tuza and M. Vizer, Grundy dominating sequences and zero forcing sets, Discrete Optim. 26 (2017), 66–77.

B. Brešar, C. Bujtas, T. Gologranc, S. Klavzar, G. Kosmrlj, B. Patkos, Z. Tuza, M. Vizer, Dominating sequences in grid-like and toroidal graphs Electron. J. Combin., 23 (2016), P4.34 (19 pages).

B. Brešar, T. Gologranc and T. Kos, Dominating sequences under atomic changes with applications in Sierpinski and interval graphs, Appl. Anal. Discrete Math. 10 (2016), 518–531.

B. Brešar, Kos and Terros, Grundy domination and zero forcing in Kneser graphs, Ars Math. Contemp., 17(2019), 419-430.

B. Brešar, T. Gologranc, M. Milanič, D. F. Rall, R. Rizzi, Dominating sequences in graphs. Discrete Math. 336 (2014), 22-36.

B. Brešar, M. A. Henning, D. F. Rall, Total dominating sequences in graphs. Discrete Math. 339 (2016) 1165-1676.

B. Brešar, T. Kos, G. Nasini, P. Torres, Total dominating sequences in trees, split graphs, and under modular decomposition, Discrete Optim., 28(2018), 16-30.

G. Chartrand, L. Lesniak, Graphs and digraphs, Third Edition, CRC Press,(1996).

T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press, (1998).

M. A. Henning and A. Yeo, Total domination in graphs, (Springer Monographs in Mathematics.) ISBN-13: 987-1461465249 (2013).




DOI: https://doi.org/10.22190/FUMI2004231M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)