GRUNDY DOMINATION SEQUENCES IN GENERALIZED CORONA PRODUCTS OF GRAPHS
Abstract
Keywords
Full Text:
PDFReferences
B. Brešar, Cs. Bujtas, T. Gologranc, S. Klavzar, G. Kosmrlj, B. Patkos, Z. Tuza and M. Vizer, Grundy dominating sequences and zero forcing sets, Discrete Optim. 26 (2017), 66–77.
B. Brešar, C. Bujtas, T. Gologranc, S. Klavzar, G. Kosmrlj, B. Patkos, Z. Tuza, M. Vizer, Dominating sequences in grid-like and toroidal graphs Electron. J. Combin., 23 (2016), P4.34 (19 pages).
B. Brešar, T. Gologranc and T. Kos, Dominating sequences under atomic changes with applications in Sierpinski and interval graphs, Appl. Anal. Discrete Math. 10 (2016), 518–531.
B. Brešar, Kos and Terros, Grundy domination and zero forcing in Kneser graphs, Ars Math. Contemp., 17(2019), 419-430.
B. Brešar, T. Gologranc, M. Milanič, D. F. Rall, R. Rizzi, Dominating sequences in graphs. Discrete Math. 336 (2014), 22-36.
B. Brešar, M. A. Henning, D. F. Rall, Total dominating sequences in graphs. Discrete Math. 339 (2016) 1165-1676.
B. Brešar, T. Kos, G. Nasini, P. Torres, Total dominating sequences in trees, split graphs, and under modular decomposition, Discrete Optim., 28(2018), 16-30.
G. Chartrand, L. Lesniak, Graphs and digraphs, Third Edition, CRC Press,(1996).
T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, CRC Press, (1998).
M. A. Henning and A. Yeo, Total domination in graphs, (Springer Monographs in Mathematics.) ISBN-13: 987-1461465249 (2013).
DOI: https://doi.org/10.22190/FUMI2004231M
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)