THE STATISTICAL MULTIPLICATIVE ORDER CONVERGENCE IN RIESZ ALGEBRAS
Abstract
The statistically multiplicative convergence in Riesz algebras was studied and investigated with respect to the solid topology. In the present paper, the statistical convergence with the multiplication in Riesz algebras is introduced by developing topology-free techniques using the order convergence in vector lattices. Moreover, we give some relations with the other kinds of convergences such as the order statistical convergence, the $mo$-convergence, and the order convergence.
Keywords
Full Text:
PDFReferences
C. D. Aliprantis and O. Burkinshaw: Locally Solid Riesz Spaces with Applications to Economics. American Mathematical Society, 2003.
C. D. Aliprantis and O. Burkinshaw: Positive Operators. Springer, Dordrecht, 2006.
A. Aydın: The statistically unbounded $tau$-convergence on locally solid Riesz spaces. Turk. J. Math. 44 (2020), 949--956.
A. Aydın: Multiplicative order convergence in f-algebras. Hacet. J. Math. Stat. 49 (2020), 998--1005.
A. Aydın: The multiplicative norm convergence in normed Riesz algebras. Hacet. J. Math. Stat. 50 (2021), 24--32.
A. Aydın, E. Emel'yanov, and S. G. Gorokhova: Full lattice convergence on Riesz spaces. Indagat. Math. (in press) (2021). doi.org/10.1016/j.indag.2021.01.008
A. Aydın and M. Et: Statistically multiplicative convergence on locally solid Riesz algebras. Turk. J. Math. (in press) (2021).
Z. Ercan: A characterization of u-uniformly completeness of Riesz spaces in terms of statistical u-uniformly pre-completeness. Demon. Math. 42 (2009), 383--387.
C. B. Huijsmans: Lattice-Ordered Algebras and f-Algebras: a survey. Springer, Berlin, 1991.
C. B. Huijsmans and B. D. Pagter: Ideal theory in f-algebras. Trans. Amer. Math. Soc. 269 (1982), 225--245.
I. J. Maddox: Statistical convergence in a locally convex space. Math. Proc. Cambr. Phil. Soc. 104 (1988), 141--145.
B. D. Pagter: f-Algebras and Orthomorphisms. Ph. D. Thesis, University of California, Leiden, 1981.
F. Riesz: Sur la décomposition des opérations fonctionelles linéaires. Atti D. Congr. Inter. D. Math., Bologna, 1928.
T. Salat: On statistically convergent sequences of real numbers. Math. Slov. 30 (1980), 139--150.
H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73--74.
C. Şencimen and S. Pehlivan: Statistical order convergence in Riesz spaces. Math. Slov. 62 (2012), 557--570.
F. Temizsu and M. Et: On statistically Köthe-Toeplitz duals. J. Math. Ineq. 13 (2019), 1147--1157.
A. C. Zaanen: Riesz Spaces II. North-Holland Publishing Co., Amsterdam, 1983.
DOI: https://doi.org/10.22190/FUMI200916030A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)