WEYL TYPE THEOREMS FOR ALGEBRIACALLY CLASS $p$-$wA(s,t)$ OPERATORS

Mohammad H.M. Rashid, T. Prasad

DOI Number
https://doi.org/10.22190/FUMI201214042R
First page
575
Last page
584

Abstract


In this paper, we study Weyl type theorems for $f(T)$, where $T$ is algebraically class $p$-$wA(s, t)$ operator with $0 < p \leq 1$ and $0 < s, t, s + t \leq 1$ and $f$ is an analytic function defined on an open neighborhood of the spectrum of $T$. Also we show that if $A , B^{*} \in B(\mathcal{H}) $ are class $p$-$wA(s, t)$ operators with $0 < p \leq 1$ and $0 < s, t, s + t \leq 1$,then generalized Weyl's theorem , a-Weyl's theorem, property $(w)$, property $(gw)$ and generalized a-Weyl's theorem holds for $f(d_{AB})$ for every $f \in H(\sigma(d_{AB})$, where $ d_{AB}$ denote the generalized derivation $\delta_{AB}:B(\mathcal{H})\rightarrow B(\mathcal{H})$ defined by $\delta_{AB}(X)=AX-XB$ or the elementary operator $\Delta_{AB}:B(\mathcal{H})\rightarrow B(\mathcal{H})$ defined by $\Delta_{AB}(X)=AXB-X$.

Keywords

class p-wA(s; t) operator, polaroid operator, Bishop's property (beta), Weyl type theorems, elementary operator.

Full Text:

PDF

References


bibitem{pi}

{sc P. Aiena}: textit{Fredholm and local spectral theory II, with application to Weyl-type theorems}, Lecture Notes

of Math no. 2235, Springer, 2018.

bibitem{pi1}

{sc P. Aiena {rm and} P. Pena}: textit{Variations of Weyl's theorem}. J. Math. Anal. Appl. {bf324} (2006), 566--579.

bibitem{pi3}

{sc P. Aiena, J. R. Guillen {rm and} P. Pe$tilde{rm{n}}$a}: textit{A Unifying approch to Weyl Type Theorems for Banach Space operators}. Integral Equations Operator Theory. {bf77}(2013), 371--384.

bibitem{pb}

{sc P. Aiena, E. Aponte {rm and} E. Balzan}: textit{Weyl Type theorems for left and right Polaroid operators}. Integral Equations Operator Theory. {bf66} (2010), 1--20.

bibitem{aa}

{sc A. Aluthge}: textit{On p-hyponormal operators for $0 < p < 1$}. Integral Equations Operator Theory. {bf13} (1990), 307--315.

bibitem{Am1}

{sc M. Amouch {rm and} M. Berkani}: textit{On property $(gw)$}. Mediterr. J. Marth. {bf5}(2008), 371--378.

bibitem{ber1}

{sc M. Berkani}: textit{B-Weyl spectrum and poles of the resolvant}. J. Math. Anal. Appl. {bf272} (2002), 596--603.

bibitem{mk}

{sc M. Berkani {rm and} J. Koliha}: textit{Weyl Type theorems for bounded linear operators}.

Acta. Sci Math(Szeged). {bf69} (2003), 359--376.

bibitem{eb}

{sc E. Bishop}: textit{A duality theorem for an arbititrary operator}. Pacific. J. Math. {bf9}~(2)(1959), 379--397.

bibitem{crtu}

{sc M. Ch=o, M.H.M. Rashid, K. Tanahashi {rm and} A. Uchiyama}: textit{ Spectrum of class $p$-$wA(s,t)$ operators}. Acta Sci. Math. (Szeged). {bf82} (2016), 641--659.

bibitem{fq}

{sc M. Ch=o, T. Prasad, M.H.M. Rashid, K. Tanahashi {rm and} A. Uchiyama}: textit{ Fuglede-Putnam theorem and quasisimilarity of class $p$-$wA(s,t)$ operators}. Operator and Matrices. {bf13} (2019), 293--299.

bibitem{Curto}

{sc R. E. Curto {rm and} Y. M. Han}: textit{ Generalized Browder's and Weyl's theorems for Banach space operators}.

J. Math. Anal. Appl. {bf 336} (2007), 1424--1442.

bibitem{mf}

{sc M. Fujii, D. Jung, S.H Lee., M.Y. Lee. {rm and} R. Nakamoto}: textit{Some classes of operators related to paranormal and log hyponormal operators}. Math. Japon. {bf 51} (2000), 395--402.

bibitem{Heuser}

{sc H. Heuser}: textit{Functional Analysis}. Dekker, New York, 1982.

bibitem{Hou}

{sc J. C. Hou {rm and} X. L. Zhang}: textit{On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem}.

J. Math. Anal. Appl. {bf220} (1998), 760--768.

bibitem{mi}

{sc M. Ito}: textit{Some classes of operators with generalised Aluthege transformations}. SUT J. Math. {bf35} (1999), 149--165.

bibitem{ln}

{sc K.B Laursen {rm and} M.M. Nuemann}: textit{Introduction to local spectral theorey}. Clarendon Press, Oxford, 2000.

bibitem{mo}

{sc M. Oudghiri}: textit{a-Weyl's Theorem and the Single Valued Extension Property}.

Extracta Mathematicae. {bf 21} (2006), 41--50.

bibitem{pt}

{sc T. Prasad {rm and} K. Tanahashi}: textit{On class $p$-$wA(s,t)$ operators}.

Functional Analysis, Approximation and Computation. {bf6} (2014), 39--42.

bibitem{pt3}

{sc T. Prasad, M. Cho, M.H.M. Rashid, K. Tanahashi {rm and} A. Uchiyama}: textit{On class $p$-$wA(s,t)$ operators and range kernal orthogonality}. Sci. Math. Japon. {bf 82}~(1) (2019), 45--55.

bibitem{prasad}

{sc T. Prasad}: textit{class $p$-$wA(s,t)$ composition operators}. Asian-Europian J. Math. {bf13} (2020) 2050086 (10 pages).

bibitem{rcptu}

{sc M.H.M. Rashid, M. Cho, T. Prasad, K. Tanahashi {rm and} A. Uchiyama}: textit{Weyl's theorem and Putnam's inequality for $p$-$wA(s,t)$ operators}. Acta Sci. Math. (Szeged) {bf84} (2018), 573--589.

bibitem{rako85}

{sc V. Rakocevic}: textit{On a class of operators}. Mat. Vesnik. textbf{37} (1985), 423-426.

bibitem{pt2}

{sc K. Tanahashi, T. Prasad {rm and} A. Uchiyama}: textit{Quasinormality and subscalarity of class $p$-$wA(s,t)$ operators}.

Funct. Anal. Approx. Comput. {bf 9} (2017), 61--68.

bibitem{zg}

{sc H. Zguitti}: textit{A note on generalized Weyls theorem}. J. Math. Anal. Appl. {bf 316} (2006), 373--381.

bibitem{mech}

{sc F. Zuo {rm and} S. Mecheri}: textit{Spectral Properties of $k$-Quasi-$M$-hyponormal Operators}.

Complex Anal. Oper. Theory. {bf 12} (2018), 1877--1887.




DOI: https://doi.org/10.22190/FUMI201214042R

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)