WEYL TYPE THEOREMS FOR ALGEBRIACALLY CLASS $p$-$wA(s,t)$ OPERATORS
Abstract
Keywords
Full Text:
PDFReferences
bibitem{pi}
{sc P. Aiena}: textit{Fredholm and local spectral theory II, with application to Weyl-type theorems}, Lecture Notes
of Math no. 2235, Springer, 2018.
bibitem{pi1}
{sc P. Aiena {rm and} P. Pena}: textit{Variations of Weyl's theorem}. J. Math. Anal. Appl. {bf324} (2006), 566--579.
bibitem{pi3}
{sc P. Aiena, J. R. Guillen {rm and} P. Pe$tilde{rm{n}}$a}: textit{A Unifying approch to Weyl Type Theorems for Banach Space operators}. Integral Equations Operator Theory. {bf77}(2013), 371--384.
bibitem{pb}
{sc P. Aiena, E. Aponte {rm and} E. Balzan}: textit{Weyl Type theorems for left and right Polaroid operators}. Integral Equations Operator Theory. {bf66} (2010), 1--20.
bibitem{aa}
{sc A. Aluthge}: textit{On p-hyponormal operators for $0 < p < 1$}. Integral Equations Operator Theory. {bf13} (1990), 307--315.
bibitem{Am1}
{sc M. Amouch {rm and} M. Berkani}: textit{On property $(gw)$}. Mediterr. J. Marth. {bf5}(2008), 371--378.
bibitem{ber1}
{sc M. Berkani}: textit{B-Weyl spectrum and poles of the resolvant}. J. Math. Anal. Appl. {bf272} (2002), 596--603.
bibitem{mk}
{sc M. Berkani {rm and} J. Koliha}: textit{Weyl Type theorems for bounded linear operators}.
Acta. Sci Math(Szeged). {bf69} (2003), 359--376.
bibitem{eb}
{sc E. Bishop}: textit{A duality theorem for an arbititrary operator}. Pacific. J. Math. {bf9}~(2)(1959), 379--397.
bibitem{crtu}
{sc M. Ch=o, M.H.M. Rashid, K. Tanahashi {rm and} A. Uchiyama}: textit{ Spectrum of class $p$-$wA(s,t)$ operators}. Acta Sci. Math. (Szeged). {bf82} (2016), 641--659.
bibitem{fq}
{sc M. Ch=o, T. Prasad, M.H.M. Rashid, K. Tanahashi {rm and} A. Uchiyama}: textit{ Fuglede-Putnam theorem and quasisimilarity of class $p$-$wA(s,t)$ operators}. Operator and Matrices. {bf13} (2019), 293--299.
bibitem{Curto}
{sc R. E. Curto {rm and} Y. M. Han}: textit{ Generalized Browder's and Weyl's theorems for Banach space operators}.
J. Math. Anal. Appl. {bf 336} (2007), 1424--1442.
bibitem{mf}
{sc M. Fujii, D. Jung, S.H Lee., M.Y. Lee. {rm and} R. Nakamoto}: textit{Some classes of operators related to paranormal and log hyponormal operators}. Math. Japon. {bf 51} (2000), 395--402.
bibitem{Heuser}
{sc H. Heuser}: textit{Functional Analysis}. Dekker, New York, 1982.
bibitem{Hou}
{sc J. C. Hou {rm and} X. L. Zhang}: textit{On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem}.
J. Math. Anal. Appl. {bf220} (1998), 760--768.
bibitem{mi}
{sc M. Ito}: textit{Some classes of operators with generalised Aluthege transformations}. SUT J. Math. {bf35} (1999), 149--165.
bibitem{ln}
{sc K.B Laursen {rm and} M.M. Nuemann}: textit{Introduction to local spectral theorey}. Clarendon Press, Oxford, 2000.
bibitem{mo}
{sc M. Oudghiri}: textit{a-Weyl's Theorem and the Single Valued Extension Property}.
Extracta Mathematicae. {bf 21} (2006), 41--50.
bibitem{pt}
{sc T. Prasad {rm and} K. Tanahashi}: textit{On class $p$-$wA(s,t)$ operators}.
Functional Analysis, Approximation and Computation. {bf6} (2014), 39--42.
bibitem{pt3}
{sc T. Prasad, M. Cho, M.H.M. Rashid, K. Tanahashi {rm and} A. Uchiyama}: textit{On class $p$-$wA(s,t)$ operators and range kernal orthogonality}. Sci. Math. Japon. {bf 82}~(1) (2019), 45--55.
bibitem{prasad}
{sc T. Prasad}: textit{class $p$-$wA(s,t)$ composition operators}. Asian-Europian J. Math. {bf13} (2020) 2050086 (10 pages).
bibitem{rcptu}
{sc M.H.M. Rashid, M. Cho, T. Prasad, K. Tanahashi {rm and} A. Uchiyama}: textit{Weyl's theorem and Putnam's inequality for $p$-$wA(s,t)$ operators}. Acta Sci. Math. (Szeged) {bf84} (2018), 573--589.
bibitem{rako85}
{sc V. Rakocevic}: textit{On a class of operators}. Mat. Vesnik. textbf{37} (1985), 423-426.
bibitem{pt2}
{sc K. Tanahashi, T. Prasad {rm and} A. Uchiyama}: textit{Quasinormality and subscalarity of class $p$-$wA(s,t)$ operators}.
Funct. Anal. Approx. Comput. {bf 9} (2017), 61--68.
bibitem{zg}
{sc H. Zguitti}: textit{A note on generalized Weyls theorem}. J. Math. Anal. Appl. {bf 316} (2006), 373--381.
bibitem{mech}
{sc F. Zuo {rm and} S. Mecheri}: textit{Spectral Properties of $k$-Quasi-$M$-hyponormal Operators}.
Complex Anal. Oper. Theory. {bf 12} (2018), 1877--1887.
DOI: https://doi.org/10.22190/FUMI201214042R
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)