A NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SENSE OF CAPUTO-FABRIZIO DERIVATIVE

Leila Moghadam Dizaj Herik, Mohammad Javidi, Mahmoud Shafiee

DOI Number
https://doi.org/10.22190/FUMI210105006M
First page
051
Last page
066

Abstract


In this paper, fractional differential equations in the sense of Caputo-Fabrizio derivative are transformed into integral equations. Then a high order numerical method for the integral equation is investigated by approximating the integrand with a piece-wise quadratic interpolant. The scheme is capable of handling both linear and nonlinear fractional differential equations. A detailed error analysis and stability region of the numerical scheme is rigorously established.


Keywords

Fractional dierential equation, Caputo-Fabrizio fractional derivative, interpolation, non-singular kernel.

Full Text:

PDF

References


M. Al-Refai and K. Pal. New aspects of Caputo-Fabrizio fractional derivative. Progress in Fractional Differentiation and Applications, 5:157-166, 04 2019.

F. Ali, M. Saqib, I. Khan, and N. A. Sheikh. Application of Caputo-Fabrizio derivatives to mhd free convection flow of generalized Walters-B fluid model. The European Physical Journal Plus, 131(10):377, 2016.

M. Caputo and M. Fabrizio. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl, 1(2):1-13, 2015.

D. Chouhan, V. Mishra, and H. Srivastava. Bernoulli wavelet method for numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order. Results in Applied Mathematics, 10:100146, 2021.

M. A. Dokuyucu. A fractional order alcoholism model via Caputo-Fabrizio derivative. AIMS Mathematics, 5(2):781-797, 2020.

G.-h. Gao, Z.-z. Sun, and H.-w. Zhang. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. Journal of Computational Physics, 259:33-50, 2014.

R. Garrappa. Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Mathematics and Computers in Simulation, 110:96-112, 2015.

E. F. D. Goufo. Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation. Mathematical Modelling and Analysis, 21(2):188-198, 2016.

X. Guo, Y. Li, and T. Zeng. A nite difference scheme for Caputo-Fabrizio fractional differential equations. International Journal of Numerical Analysis & Modeling, 17(2), 2020.

M. Izadi and H. Srivastava. An efficient approximation technique applied to a non-linear Lane-Emden pantograph delay differential model. Applied Mathematics and Computation, 401:126123, 2021.

M. Izadi and H. Srivastava. Numerical approximations to the nonlinear fractional-order logistic population model with fractional-order Bessel and Legendre bases. Chaos, Solitons & Fractals, 145:110779, 2021.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations, volume 204. elsevier, 2006.

P. Kumar, N. A. Rangaig, H. Abboubakar, and S. Kumar. A malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives. International Journal of Modeling, Simulation, and Scientic Computing, 2020.

C. Li, A. Chen, and J. Ye. Numerical approaches to fractional calculus and fractional ordinary differential equation. Journal of Computational Physics, 230(9):3352-3368, 2011.

J. R. Loh, A. Isah, C. Phang, and Y. T. Toh. On the new properties of Caputo-Fabrizio operator and its application in deriving shifted Legendre operational matrix. Applied Numerical Mathematics, 132:138-153, 2018.

J. Losada and J. J. Nieto. Properties of a new fractional derivative without singular kernel. Progr. Fract. Dier. Appl, 1(2):87-92, 2015.

K. M. Owolabi and A. Atangana. Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos, Solitons & Fractals, 105:111-119, 2017.

S. Qureshi, N. A. Rangaig, and D. Baleanu. New numerical aspects of Caputo-Fabrizio fractional derivative operator. Mathematics, 7(4):374, 2019.

H. Singh, H. M. Srivastava, Z. Hammouch, and K. S. Nisar. Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19. Results in Physics, 20:103722, 2021.

H. Singh, H. M. Srivastava, and D. Kumar. A reliable numerical algorithm for the fractional vibration equation. Chaos, Solitons & Fractals, 103:131-138, 2017.

H. Srivastava, F. Shah, and R. Abass. An application of the gegenbauer wavelet method for the numerical solution of the fractional Bagley-Torvik equation. Russian Journal of Mathematical Physics, 26(1):77-93, 2019.

H. M. Srivastava. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Mathematical Journal, 60(1):73-116, 2020.

H. M. Srivastava, E. S. AbuJarad, F. Jarad, G. Srivastava, and M. H. AbuJarad. The Marichev-Saigo-Maeda fractional-calculus operators involving the (p; q)-extended Bessel and Bessel-Wright functions. Fractal and Fractional, 5(4):210, 2021.

J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12. Springer Science & Business Media, 2013.

X.-J. Yang, J. T. Machado, and H. Srivastava. A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach. Applied Mathematics and Computation, 274:143-151, 2016.




DOI: https://doi.org/10.22190/FUMI210105006M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)